

UNIVERSTTY OF NEW HANPSHIRE
 COLLEGE OF ENGINEERING AND PHYSICAL SCIENCES SEA GRANT OCEAN PROJECTS 1985-1986

POCUS

Fiber Optic Camera Underwater System

Spring 1986
UNIVERSITY OF NEW HAMPSHIRE

Electronics:	Dave Campagna Murray Colifette Dave Herold
Optics:	John Lee Brian Giroux (project leader)
Mechanical	
Systems:	Charles B. Lawler Marie Piper
Advisor:	Allen D. Drake Professor, Dept. of Electrical Engineering University of New Hampshire

Acknowledgements	i - ii
Introduction	1-5
The Optical Design	$6-15$
Mounting Apparatus and Positioning	15-27
Differential Pulse Code Modulation	28-30
The Electrical System	30-44
Appendix A: Graded Index Fiber Terms	
and Characteristics	A1-A4
Appendix B: Experimental Calculation	
of the Index of Refraction	
of the Viewport	B1 - B3
Appendix C: SELFOC Lens Theory	C1 - C5
Appendix D: Transmission Line Theory	D1 - D6
Appendix E: Transmitter and Receiver Data	E1 - E6
Appendix F: Transmitter and Receiver	
Block Diagrams, Schematics,	
and Timing Diagrams	F1-F7
Appendix G: Data Sheets	G1-G38
Appendix H: End Notes and References	H1 - H3

ACKNOWLEDGEMENTS

FOCUS would like to extend our appreciation and thanks to the following individuals who offered their time, suggestions, and facilities to us:

Prof. Allen Drake, University of New Hampshire
Mr. John Barbour, District Sales Manager, Analog Devices, Inc.
Mr. Steve Lefoley, AT\&T Bell Laboratories
Prof. John LaCourse, University of New Hampshire
W. Ken Stewart, Woods Hole Oceanographic Institution

Chris von Alt, Woods Hole Oceanographic Institution
Prof. Glen Gerhard, University of New Hampshire
Prof. Ronald Clark, University of New Hampshire
Marc Parent, University of New Hampshire
Prof. Filson Glanz, University of New Hampshire
Rick Collins, Sales Associate, AT\&T Technologies, Inc.
Jim Hartiman, Woods Hole Oceanographic Institution
Judy Renaud, University of New Hampshire
Colleen Lannan, University of New Hampshire
Mr. Richard Campagna
Jay A. Barriss

Thanks are also extended to the following companies and organizations for their assistance and suggestions:

Woods Hole Oceanographic Institution

AT\&T Technologies, Inc., Framingham, Mass., \& Reading, Penn. AT\&T Bell Laboratories

American Radio Corp., Dover, N.H.
Analog Devices, inc.
Pioneer Co., Woodbury, N.Y., \& Norwalk, Conn.

PROJECT FOCUS

INTRODUCTION

The Woods Hole Oceanographic Institution in Woods Hole, Massachusetts, is currently operating an Advanced Manuverable Underwater Viewing System (AMUVS) which delivers real-time video from underwater areas that are difficult to observe by other viewing techniques. Deployed and controlled from a manned submarine, the AMUVS and its tether system utilize manuverability and small size for observation of submerged objects and confined areas. The AMUVS is controlled by the manned vehicle ALVIN, and can operate at a maximum depth of 6000 meters.

A launch and retrieval system is designed to allow an operator in the manned sub to release the AMUVS and control both the vehicle movement and the umbilical cable deployment (Figure 1). As the operator manuvers the vehicle remotely, a black and white video camera mounted in a titanium pressure housing relays views of the surroundings to the manned submarine'.

Having successfully demonstrated the AMUVS - ALVIN system, the Deep Submergence Laboratory (DSL) of WHOI proposed improvements and alterations in the existing design. DSL desired to nave the real-time, black and white video display replaced with a color signal. The umbilical cable of the AMUVS, however, creates several problems prohibiting the direct installation of such a system. The video signal, as well as other control data and power, are sent across the metal conductors in the cable.

Figure 1: General Arrangement ${ }^{2}$

These conductors have a maximum data rate capability, which the current system is near approaching. By adding the color signal (which has.a substantial data rate increase over black and white), the cable would have to be redesigned to accommodate the added bandwidth.

The cable is also a very restrictive element of the tether system: the length and mass of metal conductor cable can be extremely difficult to manage, since twisting and tensile forces must be accounted for. The shear weight of such a cable itself is a problem, adding stress to the launch and retrieval unit and increasing the chances of a fouled tether.

The proposed solution that has been oftered by DSL to support the color camera signal is to redesign the umbilical cable as a fiber-optic system.

The optical waveguide is capable of carrying substantially
more data with less loss than a coaxial or paired-wire cable. Figure 2 shows the attenuation versus frequency for three transmission media. The loss in the optical fiber is virtually constant, but the loss in the metallic transmission lines increases with increasing transmission rates, thus creating an upper limit of their use at highbit rates that is far below such a limit for an optical waveguide (see Table l).

* fiber loss at a carrier wayelength of o. $82 \mathrm{\mu m}$

Figure 2: Attenuation Versus Frequency ${ }^{3}$

Optical fibers also lack other troublesome properties associated with metallic transmission media: they are nonconductive, nonradiative, and noninductive. Ground loops and radiative interferences that accompany coaxial cables do not cause similar setbacks in optical systems.

GROWTH CAPABILITY

TRANSMISSION MEDIA COMPARISONS

Transmistion Media	Less in de/km ar Hell Bil Rate Froquancy (Digital Transmission Rar*)		
	7, $0.544 \mathrm{Mb} / \mathrm{s}$	[2 $20.372 \mathrm{Mb} / 41$	T3144.736 Mb/sis
26-GAUGE TWISTED WIRE PAIR	24	48	128
19-GAUGE TWISTED WIRE PAIR	10.1	21	56
0.375-in-DIAMETER COAXIAL GABE	2.1	4.5	11
Low-loss OPTICAL FIBER *	3.5	3.5	3.5

* figer loss at a carrier wavetengit of o.g? mm

Table 1: Growth Capability ${ }^{4}$

The small size and light weight of optical fibers are also advantageous, since less stress will be put on the launch and retrieval unit, and deployment of the cable will be substantially easier. Optical fibers also have a small minimum bending radius, adding to easier tether management.

Also very important in the redesign of the AMUvS umbilical cable is the flexibility of system growth. As mentioned previously, "bit rates are restricted in metallic conductors. The optical fiber not only allows for the added color camera bit rate, but also allows for further growth should any more high-bit capacity instruments or controls be introduced to the AMUVS. Current plans of DSL include the adaition of yet another color camera to provide stereo viewing. Also in the makings are thoughts of building a small manipulator arm that would be controlled remotely. The optical system would allow for these expansions and restrict the necessity for design alterations to the electronics at either end.

THE EOCOS DESIGN

The department of Ocean Engineering at the University of New Hampsine oftered Woods Hole a team of engineering students to design, construct, and test an optical system for the ALVIN/AMUVS. The result was project FOCUS (Fiber Optic Camera Underwater System).

In terms of general operation, the FOCUS system needed to be low-cost, with ample protection and durability in order to function in normal underwater missions. The optical link also demanded facile maintainence and service, both on the surface ship and in drydock.

Penetration of the ALVIN's pressure housing also introduced a formidable design constraint. Because the submersible is a manned vehicle operating at extreme ocean depths, any hull penetration needs to undergo rigorous safety testing by the United States Navy. These test procedures are tedious, expensive, as well as time consuming (on the order of two to three years), but nonetheless necessary to insure the well being of the operators and passengers. Since the ALVIN's only existing penetrators are electrical penetrators, FOCUS proposed using an optical path through the ventral plexiglas viewport (the one least used by the pilot in navigation). While by-passing the safety hazards just mentioned, this technique also created the need for a sturdy and practical support mechanism for the optical equipment both inside and outside the submersible. Figure 3 shows the basic optical system.

Figure 3: Optical System ${ }^{6}$

THE OPTICAL DESIGN

THE FIBER

Woods Hole provided focus with the following characteristics of the fiber that will be used in the design:

- Multimode, with a graded index
- Bandwidth of 650 MHz * km
- Core diameter: 50 microns
- Cladding diameter: 125 microns
- Losses:
$<=3.5 \mathrm{~dB} / \mathrm{km}$ at a wavelength or 850 nm
$<=1.0 \mathrm{~dB} / \mathrm{km}$ at a wavelength of 1300 nm
- Numerical Aperture (NA): 0.2
(See Appendix A for discussion of these terms)

OPTICAL TRANSMISSION AND DETECTION

The optical transmitter/receiver package that FOCUS is using is the $A T \& T$ ODL 200 Lightwave Data Link, a pair of chips that satisfies the signal requirements.

Most importantly, the ODL 200 is designed for data rates that range from 40 to $220 \mathrm{Mb} / \mathrm{s}$, thereby providing sufficient speed to handle the $160 \mathrm{Mb} / \mathrm{s}$ converted camera signal. Some of the other characteristics of the ODL pair that apply to the FOCUS design are:

- An integral lens-coupled optical connector that is compatible with AT\&T's ST ferrule lightguide cable connector. Using these connectors on our optical cable, the fiber can readily be attached to the transmitter and receiver.
- A long wavelength (1300-1350nm) that falls in the range of maximum efficiency calculated for the system fiber.
- An operating temperature of 0 to 70 degrees C, and a storage temperature of $\mathbf{- 4 0}$ degrees C.
- A typical optical power of -15.5 dBm.
- A Pulse Width Distortion(PWD) of 0.5 ns
- Spectral Width of 170 nm .

It should be noted, however, that the test system
constructed at UNH uses an ODL pair that is compatible with fiber having a 62.5 mic ron core and a 125 micron cladding. Due to time constraints and limited funding, this transmitter/receiver pair was more readily available and less expensive than the pair designed for $50 / 125$ micron fiber. The optical and communications principles being virtually the same in both systems, FOCUS used the $62.5 / 125$ system for proof of concept. A diagram of the optical portion of the system is shown in Figure 4.

Figure 4: Optical Link

The transmitter is driven by the communications electronics (dicussed later) and couples the optical signal into the fiber by means of the AT\&T ST connector. The data propagates down the fiber and is delivered to a specialized lens, which aids in the delivery of the light to the viewport face. The signal is picked up on the other side by a similar lens, and continues afong the
fiber where another $S T$ connector attaches it to the receiver, completing the optical link. The complete transmitter and receiver characteristics are summarized in Appendix E.

The crux of the optical design is the transmission of the optical pulses through the viewport of the ALVIN (Fig. 4). The design of such a system involved cautious and careful analysis of several optical principles, some of which are discussed here to justify the focus prototype.

Surface refraction is the bending of light as it travels from one transmission medium to another. The change in direction is due to the materials having different indices of refraction (the refractive index is simply the ratio of the speed of light in a vacuum to the speed of the light in the medium). Snell's law describes the refraction concept, and is illustrated in Figure 5.

$$
n_{1} \sin \theta_{1}=n_{2} \sin \theta_{2},
$$

where

$$
\begin{aligned}
& n_{1}=\text { refractive index of incident medium, } \\
& n_{2}=\text { refractive index of refraction medium, } \\
& \Theta_{1}=\text { angle of incidence, } \\
& \Theta_{2}=\text { angle of refraction. }
\end{aligned}
$$

A wave moving from a lower index of refraction to a higher index has an angle of incidence greater than its angle of retraction. Likewise, a signal traveling from a larger to a smaller refractive index will have an angle of refraction that is greater than its angle of incidence. Figure 5 also shows a
reflected beam (dotted line). These reflections are called Fresnel reflections and involve a power loss due to a difference of refractive indices. Two materials that have the same indices

Figure 5: Snell's Law and Index of Refraction ${ }^{8}$
of refraction mathematically have no reflections, and consequently zero power loss due to reflections.

Figure 5 shows that the angle of incidence and the angle of reflection are equal, but in general these are not equal to the angle of retraction. The refracted beam is in line with the incident beam when the angle of incidence is zero. This requires that the light be introduced perpendicular to the viewport face. Reflections still exist, however, because the light signal has to travel across the air gap between the fiber and the glass face. To minimize these losses, index matching fluid is needed to
"smooth" the barrier crossing and prevent the optical signal trom bending. In the FOCUS system, the glass fiber index and the index of the Plexiglas viewportwere not the same, so a fluid was used that represented the average of the two boundary indices. While reflection losses were not totally eliminated, they were reduced substantially from those that occurred when the light crossed through air to get to the viewport. Table 2 shows the refractive indices of the optical components.

$$
\begin{aligned}
\mathrm{n}_{\mathrm{v}}= & 1.570, \\
& \text { viewport (determined experimentally; see } \\
& \text { Appendix B), } \\
\mathrm{n}_{\mathrm{fl}}= & 1.515, \text { Index Matching Fluid. }
\end{aligned}
$$

Table 2: System Indices of Refraction

Other important properties in optical analysis are diffraction and numerical aperture (NA). Diffraction results in random change of direction of the light, due to imperfections or obstructions in the surface and volume of the viewport, and the result is a loss in optical power.

Light data from an optical transmitter is composed of many rays of light traveling down the fiber at different velocities. The numerical aperture of a fiber explains the angle at which the light travels, and is defined as

$$
N A=\sin \theta_{i}
$$

where $\theta_{i}=$ the angle of acceptance. (Figure 6)

Figure 6: Numerical Aperture of a Fiber

The fiber has a cladding which keeps the light in its core. (see Appendix A). This cladding is a glass of a lower index of refraction than that of the core index, thereby forcing the light to strike this cladding in a certain range of angles. The light is then reflected back into the fiber core, and there is no loss of light. The viewport, however, does not have this core/cladding interface; instead, it has a uniform refractive index throughout. Therefore, without special attention, the signal will not travel through the viewport as a concentrated beam and widl be difficult to recover.

The problems of numerical aperture and diffraction can be solved by transmitting a collimated beam of light through the viewport. A collimated signal provides a wide beam so that the chances of losing the entire signal (due to diffraction) are greatly reduced. A collimated beam also aligns all the light rays so that they are incident normal to the viewport face,
forcing the light to travel straight through the plexiglas.
Collimated beams are most easily achieved by using a device called a SELFOC lens (SELf FOCusing; Patent under NSG America, Inc.). A SELFOC lens is a glass rod with an index of refraction that decreases from its axis to its periphery along the radius (see Appendix C). This varied refractive index causes a light ray traveling outwards from the axis to be bent back towards the center of the lens, as shown in Figure 7."

Figure 7: Geometry of Light Rays in a SELFOC Lens ${ }^{12}$

It is desired to have $\Delta \theta$ in order to obtain perfect collimation. is given by

$$
\Delta \theta=n_{0} \sqrt{A} r_{f}
$$

where $\quad n_{0}=$ refractive index of axis of SELFOC lens, $\sqrt{A}=$ quadratic gradient constant of the lens, and $\Gamma_{f}=$ diameter of the fiber.

As a rule of thumb, $\Delta \theta$ is decreased when

$$
n_{0} \sqrt{A} r_{0}>=(N A) \text { of the fiber }
$$

when the working distance from the target is zero, ro is the radius of the SELFOC lens, and

NA of the lens \cong NA of the fiber. ${ }^{13}$
There are two SELFOC lenses in the FOCOS design. The first is placed on the outside of the viewport, and functions to collimate the beam. The second is used on the other side of the viewport, inside the submarine. It recieves the collimated beam and directs it back into the fiber. It is important that the two lenses are aligned properly, or else the focused spot in the receiving lens will not align properly with the fiber. A typical alignment error is illustrated in Figure 8.

Figure 8: Misalignment of SELFOC Lenses ${ }^{14}$

The best lens for the FOCUS system was found to be NSG's SLS-1.0 (Appendix C). This particular lens, however, could not be obtained in time for the project deadiine. Therefore, a SLW1.8 (from NSG) lens was used instead, and was suitable for proof of concept.

The viewport/lens arrangement is shown in Figure 9. It

Figure 9: Viewport and SELFOC Lens Arrangement
describes the position of the SELFOC lenses relative to the fibers, the index matching fluid, and the viewport. Figure 9 also illustrates a device called a light block. A light block is important in keeping external light from entering the viewport and interfering with the transmission signal.

MOUNTING APPARATUS AND POSITIONING
The performance of the optical signal as it penetrates the viewport relies upon a suitable mounting scheme wnich allows for positioning (aligning), durability, and consistent placement of
the connector assembly on both sides of the viewport. There are numerous design constraints which must be met to assure optimum operation.

The operating environment to which the system is exposed varies from a highly corrosive, high pressure one with wide temperature variations (i.e., the outside of the submersible), to one of a life-supporting environment existing within the ALVIN. Clearly, the major constraints occur with the exterior part of the mounting system. The ocean environment dictates that the mounting system be able to withstand hydrostatic pressures of up to 10,000 psi, be non-corrosive, and function over a temperature range of 0 to 100 degrees celcius.

The effects of hydrostatic pressure on the system is of primary importance. The preferred high pressure connector, manufactured by Giannini Petro-Marine, employs the use of a SELFOC lens assembly ${ }^{15}$ (Figure 10). The positioning of the male/female "halves" of the connector against the viewport creates voids or chambers which must contain index matching fluid.

On the exterior side of the viewport, the high pressures incurred will have an adverse effect on the fluid chamber due to the large pressure differential between the chamber and the exterior hydrostatic pressure. The system must therefore be designed to minimize the pressure differential by means of a pressure compensation device. The SELFOC lens contained in the high pressure connector has been designed and tested to withstand pressure up to 10,000 psi, the fluid chamber pressure at maximum operating depth. This pressure compensation device (Figure 11)

Figure 10: Giannini Connector \& Penetrator

Figure ll: Pressure Compensation Device

FOCUS - OCEAN PROJECTS
UNIVERSITY OF NEW HAMPSHIRE
N.T.S. 14 MAY 1986 GRE

Figure 12:
External System

EXT-1
is essentially a flexible rubber bladder fitted at one end with a coupler (to secure to the mounting assembly). The free end of the bladder is fitted with a oneway check valve to allow for filling and purging of the pressure compensation system. Index matching fluid is introduced by means of a syringe, which, when inserted into the check valve, will force the fluid into the chamber and out the fluid ducts. The objective of this design is to purge the air out of all volumes containing the index matching fluid. The system is filled and inspected to insure that no air is contained within, then attached to the protective cover plate (Figure 12), sealing the connector against the viewport. At this point, the syringe is removed and the check valve is capped to protect it from contaminants that may enter the pressure compensation device. This configuration allows for the small amount of compression and expansion of the adjacent metals as pressure changes. The considerations of size, ease of assembly, and maintenance have been incorporated into the design of the pressure compensation system.

The characteristics of the index matching fluid must include only the desired refractive index, but it must also be stable at high pressures and over large temperature variations. In addition, the fluid must possess suitable viscosity at all times during operation.

The pressure compensation device is attached to the face of the retaining collar (Figure 12) which contains the high pressure connector. The purpose of the retaining collar is to center the connector and force the connector bushing against the viewport to
create che index matching fluid chamber. The collar is composed of two halves which are fastened together around the fiber optic cable, thereby avoiding the need to manufacture the collar onto the cable as the connector is being attached.

Due to the high compressive pressures the viewport sustains, inward movement of up to $1 / 8$ of an inch. A mounting system must be designed which allows for this movement and maintains the connector's water-tight seal against the viewport. To accomplish this function, the retaining collar, which secures the connector assembly against the viewport, was designed to move with the viewport. The mechanism allowing for the inward-outward motion (Figurel3) is achieved by sliding the retaining collar over four studs affixed to the cover plate. Compressive springs are then secured against the retaining collar by means of locking nuts. The locking nuts are positioned on the studs to develop the necessary compressive force on the retaining collar to keep it against the viewport. Binding between the retaining collar and the studs is allieviated by a bushing between the two surfaces. The springs are enclosed by a protective cover which pronibits foreign particles from becoming lodged between the coils.

As was previously mentioned, the materials used in the mounting assembly are exposed to the corrosive sea-water environment. This dictates the use of titanium metal parts and rubber parts which retain their integrity throughout operation. Titanium is the primary metal used for components exposed to sea water due to its excellent corrosion resistance. Additional beneficial properties include: a relatively low density, good

Figure 13: Shrinkage Compensation System
strength, easy fabrication, and the ability to withstand temperature extremes.

The exterior mounting assembly requires a durable design and minimal protusion from the viewport. Although the ALVIN is protected by a cage, there may be instances of objects passing through this cage and impacting on the mounting assembly. To reduce the possibility of such interference, the overall height of the system was designed to be kept to a maximum of 8.7 cm . This dimension is based on the distance that adjacent electrical penetrators extend out from the hull. The cable will exhibit negligible stress on the mounting assembly, as it is fastened to the syntactic foam surrounding the hull. However, the possibility of the cable becoming snagged is recognized and incorporated in the design.

Coupled with the aforementioned pnysical design constraints, the system is designed to keep installation, maintenance, and service procedures as brief and as inexpensive as possible. Installation experience and tools are kept to a minimum, and replacement of components can be accomplished efficiently.

The interior mounting of the female half of the high pressure connector experiences many of the same constraints as the exterior assembly, with the exception of the pressure compensation system. The interior assembly must move with the viewport while maintaining a seal against the viewport. To accomplish this, a 1.0 inch thick plate, fitted with a large 2.0 inch diameter 0 -ring is inserted into the recessed area adjacent to the viewport (Figure 14). The plate is designed to mate with
the geometry of the recessed area and rest on the o-ring, creating a seal. The oring dimensions are such as to allow for the compression due to the movement of the viewport while the plate is held stationary.

As with the exterior connector, a chamber is necessary to contain the index matching fluid between the SELFOC lens and the viewport. This reservoir chamber is created by the oring seal against the viewport. Prior to inserting the connector into the plate, the reservoir is filled with fluid to insure that only index matching fluid exists between the sELFOC lens and the viewport. A gasket is adhered to the 1.0 in. plate to interface with the hull. The purpose of this gasket.is to allow for shrinkage of the hull by alleviating the possibility of pinching or binding. The gasket is $1 / 16$ in. thick and is made of closedcell neoprene sponge. The o-ring used for the seal is made of Buna-N material and has 40 durometer specification. Neither material decomposes due to the index matching fluid, and both retain their integrity after cyclical loading is experienced.

An additional constraint requires that the interior mounting assembly cannot be permanently affixed to the pressure hull. Options for securing the connector assembly are very limited; it was concluded that a suitable means for securing the system was to use two existing studs (that are used to hold the submarine floor down). A mounting plate was constructed to utilize these studs, and allows for quick installation and removal of the mounting system (Figure 14).

The mounting plate not only holds the 1.0 in. plate in position, but is also fitted with a two-axis translational

Figure 14: Internal Mounting Mechanism
INTERNAL MOUNTING ARRANGEMENT

positioner. This positioner, supplied by Ealing Electro-Optics, Inc., is necessary to adjust the position of the connector (and SELFOC lens) to align with the incoming optical signal. Additionally, the connector is secured by the positioner, maintaining the appropriate distance between the SELFOC lens and the viewport .

The overall height of the mounting system must be within the 3.375 in. existing between the hull and the subfloor; this is accomplished by the FOCUS design.

The material for the 1.0 in. plate and the mounting plate need not be titanium, but does need to be specified to avoid galvanic action and give the desired strength to secure the system in position. Again, ease of installation and service are objectives which are met with this design.

The AMUVS Remote Operation Vehicle (ROV) employs the use of the same high pressure connector being used for the viewport interface. The purpose of this connector is to allow for quick disconnection of the fiber optic cable from the ROV, rather than having the cable permanently fixed to the vessel. The connector will be utilized in a conventional manner, that is, it will not be separated by any distance. Provisions shall be made to secure the connector to the syntactic foam hull to eliminate stresses developed during operation.

The penetration of the fiber through the camera housing is accomplished by employing a Conax-Buffalo Corp. fiber optic bulkhead penetrator. The port existing on the housing requires the thread diameter of this penetrator to be 0.25 in., so a
standard $F M K-A-50$ model was specified. The purpose of this penetrator is to allow a continuous fiber to pass through the housing for uninterrupted operation. The Conax penetrator is tested to $15,000 \mathrm{psi}$ and has an operating temperature range of -40 to 205 degrees C.

For laboratory testing of the entire electrical-opticalmechanical system (and also for demonstrating purposes), a model emulating the viewport arrangement was constructed. The viewport, on loan from WHOI, is mounted in a frame constructed to the specifications of the hull immediately surrounding the viewport. A model of the interior mounting assembly has also been constructed, with the exception of the Giannini high pressure connector. Components include the l. 0 in. plate, the mounting plate, and the positioner. Exterior modeling of the mounting system will not be developed until the proof-of-concept for the signal transmission is verified. For testing purposes, the high pressure connector is replaced by two SELFOC lens assemblies. The lenses will be positioned to allow for a chamber to be filled with index matching fluid. The exterior assembly will be secured by sliding the SELFOC lens holder through the protective cover plate, and retained by a collar fixed to the cover plate. The interior assembly follows the same format, except that the SELFOC lens holder is secured by a collar mounted on the positioner, which allows for aligning the lenses. This mounting system approximates the actual system without the major constraint of high pressure.

DIfFERENTIAL PULSE CODE MODULATION

There are many methods of transmitting analog information across a digital channel. The most common is known as pulse code modulation (PCM). PCM is essentially an analog message that is represented by a coded group of digital pulses. A variation of PCM is delta modulation (DM).

Delta modulation (DM) is the simplest method for converting an analog signal to digital form but also requires a larger transmission bandwidth than PCM. The theory behind DM is that the message is compared to a stepwise approximation by subtraction, the difference being passed through a hard limiter whose output equals +delta or -delta, depending on the polarity of the difference. ${ }^{16}$. Since there are only two possible outputs of the limiter, the result is a binary waveform.

A step beyond delta modulation is differential pulse code modulation (DPCM). Once again, a difference signal between the message and a previously sampled portion of the message is created. With DPCM there is now a pulse coded representation of a differential signal as opposed to a binary step. This allows the system to better respond to large changes of amplitude in the input signal. The advantages over delta modulation are balanced by more complexity in the circuit--about the same as a PCM circuit. ${ }^{17}$ When compared to PCM, DPCM has the advantage of using fewer bits to transmit the same amount of information. To illustrate this, nine bits are used with PCM to give acceptable color video-signal reproduction as opposeà to three bits for

DPCM. The FOCUS design incorporates six bits of information in its transmission for a higher degree of resolution in the reconstructed color signal.

In summary, differential pulse code modulation was chosen for various reasons. Since only six bits of actual video information are being transmitted instead of nine bits, circuit complexity was reduced. It was also determined that it was less likely to lose information with fewer bits transmitted. A third reason is that since there are six bits of information, the possibility of replacing part of the transmitted code with additional timing information, control signals or another color camera could be considered more easily in future erforts.

Several factors were taken into consideration in the design of the focus electronics: size, speed and the fact that information is to be sent across only a single fiber optic cable. Restricting transmission to a single fiber optic cable was a major design task for F focus. This required increasing the transmission speed by a factor of however many bits were being transmitted. In addition to increased speed, more complex parallel-to-serial conversion circuitry is required. The same is true for serial-to-parallel conversion at the receiver. The additional conversion and serial transmissions require very fast operations if a color video signal is to be accurately reproduced. A high speed logic family known as Emitter Coupled Logic (ECL) was chosen to implement the FOCUS design.

ECL offers several advantages over other logic families. These advantages include high switching rates, low propagation delays with moderate edge rates, and the ability to drive low
impedance transmission lines. Temperature compensation is also available on most ECL components. Although ECL is extremely static sensitive and requires great care in handing, it has the performance characteristics that best suit the design requirements.

Although power consumption was not a major design constraint, power dissipation in the form of heat must be taken into consideration. This poses no significant problem for the receiver as that will be located on an equipment rack in the submersible ALVIN where adequate air flow can be obtained for cooling. Power dissipation in the transmitter circuit poses no problem in the desk-top model; adequate air flow is available here also. When the circuit is contained in the small titanium pressure hull of the AMUVS where there is no air flow at all, an alternate form of heat sink will have to be used. One proposed solution is to use the hull as part of the heat sink since it is approximately the same temperature as the surrounding environment (three degrees Celcius at operating depth).

Another consideration is the environment in which FOCUS will operate. The receiver, as stated earlier, will be in the ALVIN, an environment which most electronics are capable of handing. The transmitter, however, will be operating in temperatures ranging from about three to over forty degrees Celcius, and both will need to be operable in all weather conditions on the deck of the ship. For these reasons, chips of military specifications were used when available.

THE ELECTRICAL SYSTEM
TRANSMITTER

Introduction

The transmitter takes the raw video signal and converts it to a digital signal for optical transmission. The video signal is sampled using Differential Pulse Code Modulation (discussed in a later section). The digital sample is then sent serially across the optical fiber.

General Theory

The transmitter is designed to sample the video signal every 100 nanoseconds for a sampling frequency of 10 MHz . This is 2.4 times the highest frequency contained in a color video signal, thereby satisfying the Nyquist sampling criterion. Six bits of data, including an overflow bit are used to represent the amplitude of each sample. These six bits are then combined with a nine bit flag code for transmission. The purpose of the flag code is data and clock synchronization in the receiver.

Detail of the Transmitter

The following is a detailed discussion of the transmitter. It will be helpful to refer to the Transmitter Block Diagram Schematic and Timing Diagrams in Appendix F.

The video signal enters the circuit through a buffer. This buffer isolates the transmitter from the camera and provides the proper impedance match to the incoming line. The buffer is made
of a high frequency operational amplifier, with at least a 5 MHz bandwidth.

The buffered signal then goes to a summing junction, where the reconstructed video signal from the last sample is subtracted from the incoming video signal. The output of this summer is the difference between the incoming video and what the video was at the last sampling time. This difference is what is eventually transmitted to the receiver. The summer is made up of another high frequency operational amplifier.

The differential signal is converted to a six bit digital code by the analog to digital converter (A/D). An Analog Devices AD 9000 flash converter was chosen for this application, due to its small size, ultra-fast conversion time (13 nanoseconds), and compatibility with ECL logic.

The digital output of the converter goes to two places. The first is a digital to analog converter (D/A). This ultra high-speed converter recreates the analog differential signal that was originally sent to the A / D converter. A buffer is between the outputs of the A / D converter and the inputs of the D/A converter to insure the digital data is present for conversion. The reconstructed differential signal is then integrated. This integrated signal is the sum of all the differential signals, and thus it is the reconstructed video signal. It is this signal that is subtracted from the incoming video to create the next differential signal.

The second place the data goes to is the parallel to serial converter; this converter is a pair of eight-bit shift registers. The registers parallel load the six bits of data plus the nine
bit flag code, and then serially shift out all fifteen bits, one at a time. This sixteen part cycle (one load and fifteen shifts) must repeat every 100 nanoseconds. This results in a transmission rate of 160 million bits per second.

The shift registers are clocked by a 160 MHz oscillator. A very high speed crystal oscillator with ECL logic levels will be installed. Currently the clock is being driven by a variable frequency oscillator for test purposes. The clock also drives a "divide by $16^{\prime \prime}$ circuit. This 10 MHz signal tells the shift registers when to load (as opposed to shift), and tells the A / D converter when to start converting.

The serial output of the shift registers goes to the AT\&T ODL 200 electrical to optical converter, which delivers the light signal to the fiber.

Detail of the Receiver

The receiver is basically just the opposite of the transmitter. The optical fiber connects to the AT\&T ODL 200 optical to electrical receiver. The converted electrical output connects to the serial to parallel converter shift registers.

The flag code comes into play as the data is being shifted into the registers. The format of the transmitted data is shown in Figure 15.

The format is made up of the nine bit flag code, which is sent first; the six bits of data are sent next. The last bit is a "don't care" bit, which represents whatever appears at the transmitter output when its shift registers are loading in the
next data word to be sent out.

Figure 15: Transmitted Data Format

As the incoming flag code and data are shifted into the receiver shift registers, the flag code circuitry is checking to see if the zeros in the code are lined up. When the four zeros of the flag code line up, a signal is sent to the shift registers telling them to hold. A signal is also sent to the holding register telling it to load the new data word. After the data have been transferred from the shift register to the holding register, the shift registers are cleared by being loaded with logic ones. This resets the flag code check circuitry and prevents a data word that might look like the flag code from activating the check circuitry.

The other purpose of the flag code is to provide clocking information to the receiver. The flag code's pattern of zeros and ones forms an 80 MHz square wave. This wave is presented to a phase locked loop that locks onto this frequency and produces a wave of double the frequency (160 MHz). The 160 MHz signal is used for clocking the shift register.

The holding register holds the data at the inputs of the digital to analog converter. The converter is an Analog Devices AD9768 ultra nigh speed converter. It features ECL'logic levels, a 100 MHz update rate, and a 5 nanosecond settling time. This converter is not clocked. It continually updates its analog output according to the current digital input. The output of the D/A converter is then integrated to reproduce the original video signal. This converter/integrator pair is the same pair used in the ransmitter feedback path. The output of the integrator is impedance matched to 75 ohms.

PHASE LOCKED LOOP
A phase locked loop (PLL) is basically an electronic servo loop consisting of a phase detector, a low-pass filter and a voltage controlled oscillator. The controlled oscillator phase makes it capable of locking in or synchronizing with an incoming signal in both frequency and phase. If the phase changes, indicating the incoming frequency is changing, the phase detector output voltage increases or decreases enough to keep the oscillator frequency the same as the incoming frequency." ${ }^{20}$ In this manner, the plL will receive a signal and track it in frequency and phase. The PLL designed for the focus project is basically the same as described above but with several unique modifications: frequency multiplication to generate clocking signals for the rest of the receiver, very high speed operation and a multiplexed input select.

Since only one line of serial data is available for use, no continuous clock signal can be tracked to synchronize the
receiver. As discussed earlier, an eight bit flag code is in the form of an 80 MHz square wave, and the following eight bits are data and synchronization bits. The availability of the square wave is every other eight bits. The problem of obtaining a continuous clock signal was solved by using a multiplexed input to the PLL. During the first half of the cycle, the multiplexer feeds the eight bit square wave from the input line into the PLL. On the eighth shift of information into the register, the multiplexer switches to bit nine of the shift register since the square wave is now passing this point. In this manner, the PLL sees a continuous, 80 MHz square wave to provide correct clocking for the rest of the circuit.

The input circuit of the PLL is a phase-frequency detector. The phase detector produces a positive or negative pulse whose width is proportional to the amount of phase lead or lag between the input frequency and the current PLL output frequency. Phase error information is contained in the duty cycle of the phase detector output, that is, in the ratio of output pulse width to total period.

The next stage of the PLi is a filter. By low-pass filtering or integrating the output of the detector, usable analog information for the VCO can be recovered.

The vco was designed to idle at the same frequency as the clock on the transmitter, thereby allowing faster lock in times for the PLL. The output of the oscillator is the 160 MHz clock that is usea to drive the receiver. In order to provide for this doubling of frequency from the 80 MHz input to the PLL, a divide by two circuit is used in the feedback path from the oscillator
to the phase detector.
A D-type flip-flop is used to provide an 80 MHz signal whose phase and frequency are proportional to the vco output. It is this 80 MHz signal that is compared to the 80 MHz wave from the incoming data stream.

For the remaining discussion it will be assumed that the loop is in lock. Since the pLL is being used for clocking, a line driver is required to reduce the fan-out from five to one. This is especially important in high speed circuitry since increasing fan-out decreases circuit speed due to capacitive loading. Three outputs from the driver are used to clock other parts of the circuit, and the other two are retained for use in the PLL.

TRANSMISSION LINE THEORY

As has been previously mentioned, the transmitter and receiver were designed to operate at a 160 MHz clock rate. At this frequency, it was suggested that the circuit board traces be treated as transmission lines. With this method, reflections at line-chip interfaces could be minimized.

The important information derived from transmission line theory will be summarized here. The derivations themselves have been placed in Appendix D.

A transmission line has associated with it the dynamic parameter Z_{0}, the characteristic impedance. It is defined as the ratio of transient voltage to transient current at a point in the line. When a load is connected across the line, the resistance (impedance) of this load must equal the characteristic impedance
of the line or a reflection will occur.
With ECL circuits, one method of termination (loading) requires a resistor to be connected from the end of the line to a voltage V_{T}. This voltage is usualy -2 volts.

Two common types of $P C$ board transmission lines are microstrip and stripline, figure l6. Stripline requires multilayer construction techniques; microstrip uses ordinary double-clad boards.

Microstrip offers easier fabrication and higher propagation velocity than stripline, but the routing for a complex system may require more design effort. Electric fieldfringing requires that the ground extend beyond each edge of the signal trace by a distance of no less than the trace width. It was decided that one side of the circuit board should be devoted entirely to ground plane except for small areas devoted to V_{T}.

In order to determine the characteristic impedance for the proposed trace widths of $0.062^{\prime \prime}$ and $0.031^{\prime \prime}$, the chart of figure 17 was used. The thickness of the boards used for the transmitter and receiver was measured to be $0.06^{\prime \prime}$. The board composition could not be determined and was assumed to be G-lo epoxy in order to use figure l7. The following values were calculated:

$$
\begin{aligned}
& Z_{0}=68 \text { ohms when } W=0.062^{\prime \prime} \\
& Z_{0}=90 \text { ohms when } W=0.031^{\prime \prime}
\end{aligned}
$$

The magnitude of reflections from the terminated end of the line depends on how well the termination resistance R_{T} matches the line impedance z_{0}. The ratio of the reflected voltage to the incident voltage is the reflection coefficient. The degree of reflections which can be tolerated varies in different
a. Microstrip

b. Stripline

Figure 16: PC Board Transmission Lines

Figure 17: Microstrip Impedance Versus
situations, but to allow for worst-case circuits, a good rule of thumb is to limit reflections to 15% to prevent excursions into the threshold region of the ECL inputs conected along the line. ${ }^{6}$

For the FOCUS design, the following constraints apply:
For $\mathrm{Z}_{0}=68$ ohms, $91.8>\mathrm{R}_{\mathrm{T}}>50.3$ ohms
For $\mathrm{Z}_{0}=90$ ohms, $121.5>\overrightarrow{\mathrm{R}}_{\mathrm{T}}>66.6$ ohms
For a line terminated at the receiving end with a resistance to 2 volts, a rough rule of thumb is that the termination resistance should not exceed line impedance by more than $50{ }^{2} 2$

CONSTRUCTION
In order to construct a prototype which would accurately represent the final circuit to be placed in the AMUVS, several constraints had to be met. First, the geometry of the prototype had to lend itself to layout on four inch diameter circuit boards. Second, space had to be left in the center of the design layout to accomodate the mounting bolt used in the actual AMUVS. Both Woods Hole and UNH had facilities to etch single layer, double sided boards.

The construction sequence for all the printed circuit boards followed roughly the same sequence.

1) Appropriate size boards were cut from large double sided sheets using a Dremel tool equipped with an emery cutting wheel.
2) The boards were cleaned with a non-detergent cleanser and then with ammonia to remove all surface contaminants.
3) The traces and bonding pads were layed out on the board using etch resistant transfers and tapes from DATAR.
4) The boards were then heated to 120 degrees F and a coat of photoresistive material was applied to the reverse side.

This coat was allowed to dry and the cycle was repeated two more times. This was necessary to preserve the ground plane.
5) The boards were then placed in a ferric-chLoride etchant for approximately 45 minutes to remove the unwanted copper. What remained was the ground plane, signal traces and solder pads.
6) The boards were washed to stop the action of the etching process and then scrubbed to remove the tape and transfers as well as to remove the photo-resist. At this point, the boards were ready for components to be soldered on.
7) All components were soldered to the board, which was then moved to the grounded work surface for chip mounting and testing.

TESTING

After all power supply connections were made and continuity was checked, the system was powered up. The clock and analog signals were supplied by external signal generators. The clock speed was initially 100 KHz and the analog signal was a 5 KHz sine wave. The power supply was sourcing 1.2 amps of current to the transmitter (the receiver had not been constructed yet). The initial results were that no portion of the circuit appeared to be operational.

The first goal was to get the clock divider portion of the transmitter operational. The chips under consideration were the up/down counter (F100136) and the 5-input or/nor (F100101). The output of the or/nor gate was fed back to the counter to serve as load/count down control signal. Since it could not be insured that the system would come up in a state which allows a count down (high output from the or/nor), the feedback was broken and
this input on the counter was tied to a logic high level. With this correction, the counter was locked in the count-down mode and it was operational.

All outputs of the or/nor chip were now found to be at ground potential. It was decided that, since this voltage was above logic $h i g h$ and the output did not change with changing inputs, the chip was faulty. When this chip was replaced, the desired output of a negative going pulse occurring once every 16 clock cycles was observed.

At this point, a check was made of the other circuit elements.

1) The A / D converter was functioning properily.
2) The hold register for the D / A converter was not operational.
3) The output of the D / A converter was at ground potential.
4) The parallel-to-serial converter was not operational. It was observed that when the load/hold control line the output of the or/nor gate) was held low (corresponding to a load condition), the output of the A / D converter was partially ground and partially a 5 KHz sine wave.
5) The DPCM circuitry was not operational and was disconected.

The output of the A / D converter is not valid when its encode signal (clock divided by sixteen) is high. Since the hold register is essentially transparent in the load mode, these invalid signals were converted to ground potential by the D / A converter. Therefore, if the register could be made to hold
properly, then an accurate conversion could be made.
When the load/hold signal and the clock were observed simultaneously, it was clearly seen that the load/hold signal went low on a rising edge of the clock and returned to high on the next rising edge of the clock. According to the truth table for the register, load/hold had to be low while a rising clock edge occurred. The original design had counted on propagation delay to create this condition. Short line lengths and gate delays made this method unreliable. The solution was to invert the clock to all chips using this signal. (This was another reason the feedback of this signal to the up/down counter was broken: there was noway to invert the clock with respect to this signal at this chip. Inverting the clock on the counter merely shifted the pulse but did not change the phase relation between the two).

When this change was made, the output of the D / A converter was again constant at ground potential. It seemed as if progress had taken a step backwards. By looking at one of the A / D converter outputs (which showed the encode pulse envelope) and the load/hold signal simultaneously, it was observed that the load pulse arrived when data was not valid and immediately before the rising edge of the encode signal. (Recall that the encode signal is one of the inputs to the or/nor gate which produces the load/hold pulse). By using the complement of the encode signal as the input to the or/nor gate, the occurrance of the load/hold pulse was moved to the point where the converter data was valid and just before it became invalid. This method is far better than depending on delays in that it allows the converted data to
settle out before it is loaded into the register.
A check of the system at this point showed that everything except the DPCM circuit was operational. The next thing to determine was the maximum speed of the circuit. The clock speed was increased until the system was no longer functioning (no output from the D / A converter). The breakdown frequency was 15 MHz .

A check of the load/hold signal and the clock signal revealed that heavy capacitive loading due to the multiple inputs being driven was the cause of breakdown. At 15 MHz , the load/hold signal could not reach a voltage low enough to be recognized as a $\log i c$ low. At 20 MHz , the same happened to the clock. The solution was to add a quad driver (FIOOll2) to the circuit.

This addition will be implemented on the second version (under construction as of $5 / 1 / 86$) and is expected to make the 160 MHz rate attainable although accurate data conversion is still questionable.

The question of accuracy stems from continuing problems with the DPCM scheme. The transmitter reconstructs the input signal by integrating (low-pass filtering) the output of the D / A converter. This reconstructed signal is then subtracted from the current signal producing a difference signal which can be accurately represented by six bits. If the integrator added only a constant amount of phase shift to the signal, there would be no problem. In reality, the phase shift is a function of frequency. This causes signals at one frequency to subtract while those at another add. The end result is distortion which cannot be
allowed. One solution under consideration is the use of constant phase shift networks to compensate the integrator phase shift.

The problems associated with the receiver have been minimal. The receiving circuitry was divided into two sections: a serial-to-parallel converter and the phase locked loop/timer. Each circuit was placed on a separate board to aid in testing the receiver.

Part of the construction plan was to have the recerver construction lag behind that of the transmiter by about a week so that problems encountered with the transmitter could be avoided in the receiver. This proved to be quite helpful.

As of May 1 , the phase locked loop board has not been tested, but will be operational by the time the transmitter and the serial-to-parallel converter are capable of operating at that high a frequency. By using the trasmitter clock signal in the serial-to-parallel converter circuit, audio information was transmitted across a twisted pair transmission line.

Future cooperative efforts between $W H O I$ and UNH include:
-- The transmission of a video signal at the clock frequency of 160 MHz .
-- Modifications to the transmitter and receiver circuitry to reduce the number of times clocking information is sent, from once every 100 nano-seconds to once every $30 \mathrm{milli}-\mathrm{sec}$ onds. This would allow either the reduction of transmission rate or the addition of a second camera signal.
-- The development of a complete bi-directional telemetry system for the AMUVS.

Appendix $\mathrm{A}^{\mathbf{2 4}}$
Graded Index Fiber Terms and Characteristics

1) Fiber Structure:

Optical fibers are designed to permit light energy to travel through it in a region called the core. The light rays are prohibited from escaping because the core is surrounded by another layer of glass known as the cladding. Figure A-l shows the geometry of the core/cladaing interface. The design of these glass fibers is such that the core index of refraction is larger than the cladding index. This causes light to reflect at the boundary, and remain in the core. There are certain limitations on the maximum angle that the light can strike the core/cladaing interface which must be observed to avoid losses of energy.

Figure A-1: Core \& Cladding of an Optical Fiber
2) Transmission through an optical fiber.

Propagation of light energy in optical fibers is based on a concept of "modes". A mode is an allowable field configuration for a given geometry of a fiber. The number and type of modes allowed in a fiber determine the degree to wich tnat fiber will distort a signal. The fiber in the focus system is a multimode one, as opposed to a single mode fiber. Multimode fibers are advantageous in that they can be coupled to an LED source, whereas a sinlge mode fiber requires a laser source. Multimode fibers are also easier to attach to connectors because they have a larger core dimension.

The graded index fiber operates on the principle of equalizing the group delays of the various propagating mode groups. Light rays that are traveling straight through the fiber will tend to arrive at the end faster than rays that are moving at angles and bouncing off the boundary. The varying index of refraction tends to "speed up" light traveling near the cladding, so that all the light rays arrive at the end of the fiber at the same time. Figure A-2 shows the refractive index profile of a graded index fiber.

Efficiency of transmission is also dependent on the wavelength of the light source. Figure A-3 shows how the attenuation of a typical multimode fiber varies with wavelength.

Other important terms dealing with fiber losses are:
Pulse Width Distortion (PWD) :
This is the measure of the difference in amplitude between the input signal and the output signal (at any time t) due to

Figure A-2: Refractive Index Profile of a Graded- Incex Fiber

Figure A-3: Spectral Loss Curve of an Optical Fiber
delays in the propagation modes (Figure A-4). Spcetral Width():

Spectral Width is the range of wavelengths in the fiber. As shown in Figure A-3, broad variances in wavelength increase the overall attenuation of the signal.

Figure A-4: Pulse Distortion of an Optical Signal Due to Delays in Propagation

Appendix B

Experimental Calculation of the Index of Refraction of the Viewport

The index of refraction of the viewport had to be determined in order to specify some of the other optical components. A laser beam was projected through the viewport, and the incident and reracted angles were measured. After several trials, Snell's law was used to calculate the index of refraction. The data for this procedure appears in Tables $\mathrm{B}-1$ and $\mathrm{B}-2$, and the geometry of the tigure is shown in Figure $B-1$.

Experiment 1 yielded an average n of 1.555, while experiment 2 produced 1.589 for the refractive index. Standard deviations were 0.0978 and 0.0867 rerspectively. Overall, the average of experiments 1 and 2 gave a refractive index n of 1.573, with a standard deviation of 0.0905 . Trimming the data (i.e., disregarding the highest and lowest values) yielded $n=$ 1.570, with a 0.0516 standard deviation. Focus accepted the value of $n=1.570$ as the index of refraction of the viewport.

X	TRIAL	INCIOENT ANGLE degrees	QEFRACTED ANGLE degrees	N VIEWPORT
.950	1	11.0	6.0996	1.7960
1.725	2	17.0	10.981	1.5354
2.750	3	27.5	17.1887	1.5630
3.050	4	31.5	18.9360	1.6106
3.640	5	36.5	22.2666	1.5703
4.011	6	40.0	24.4390	1.5541
6.320	7	64.0	35.4094	1.5517

Table B-1: Refractive Index Data, Experiment 1

X	TRIAL	INCIOENT ANGLE degrees	REFRACTED ANGLE degrees	N VIEWPORT
.850	1	8.0	5.460	1.4630
1.400	2	12.5	8.949	1.3920
2.050	3	21.0	12.985	1.5954
3.000	4	30.5	18.647	1.5880
3.800	5	41.5	23.144	1.6860
4.175	6	43.0	25.156	1.6050
5.500	7	55.0	31.744	1.5570

Table B-2: Refractive Index Data, Experiment 2

Figure B-1: Geometry of Light Passing Through the Viewport

APPENDIX C^{25}

SELFOC Lens Theory

The profile of the refactive index (Figure C- 1) is expressed as: $n(r)=m_{0}\left(1-\frac{A}{2} r^{2}\right)$
where
$n(r)=$ refractive index at any point r, $n 0=$ refractive index on the optical axis z,
$A=$ refractive index gradient constant, $r=$ radial distance from optical axis (mm).

Figure C- I: Refractive Index Profile of a SELFOC Lens The ray matrix can be derived from equation 1 :

$$
\binom{r_{2}}{r_{2}}=\left(\begin{array}{cccc}
\cos \sqrt{A} z & \frac{1}{n_{0} \sqrt{A}} & \sin \sqrt{A} & Z \\
n_{0} \sqrt{A} \sin \sqrt{A} & z & \cos \sqrt{A} & Z
\end{array}\right)\binom{r_{1}}{r_{1}}
$$

where

$$
\begin{aligned}
r l= & \text { distance between incident point and optical } \\
& \text { axis (mm), } \\
\dot{r} \mathcal{I}= & \text { incident angle (radians), } \\
r 2= & \text { distance between emitting point and optical } \\
& \text { axis (mm), } \\
\dot{r} 2= & \text { emitting angle (radians), } \\
z= & \text { length of lens (mm). }
\end{aligned}
$$

The ray matrix describes a ray passing through a lens, as shown in Figure $\mathrm{C}-2$.

Figure C-2: A Ray Passing through a Lens

The ray matrix yields

$$
r 2=r 1 \cos \sqrt{A} z
$$

when parallel light rays are incident on the lens. This results in the ray moving sinusoidally within the medium, with a period of $P=2 \pi / \sqrt{A}$. P is often referred to as the pitch of the lens. For a collimating lens, $P=1 / 4$.

Some important parameters of SELFOC lenses are:

1) Focal Length (f) (see Figure C-3)

$$
\begin{aligned}
& f=\frac{1}{n_{0} \sqrt{A} \sin (-\sqrt{A} Z)} \\
& R 2=\text { principle } \\
& \text { point }
\end{aligned}
$$

Figure C-3: Focal Length of a SELFOC Lens
he focal length (f) is shortest for a $1 / 4$ pitch lens.
2) Working Distance (S)

$$
S=\frac{1}{n_{0} \sqrt{A}} C O T(\sqrt{A} Z)
$$

The working distance S is zero for a $1 / 4$ pitch lens.
3) Numerical Aperture (NA) (see Figure C-4)

$$
(N A)^{2}=\sin ^{2} \theta \text { max }=\frac{A n_{0}^{2} r_{0}^{2}\left(1-R^{2}\right)}{1-R^{2} \sin ^{2} \phi} \text {, where } R=\frac{r}{r_{0}} \text {. }
$$

The numerical aperture decreases as an incident ray moves away from the center axis, and is zero at the periphery.

There are two main types of SELFOC lenses: SLS and SLW. A table of parameters for the two is given on the next page (Table C-1) for a $1 / 4$ pitch and a operating wavelength of 1300 nm .

Table C-1: Parameters for SLS and SLW SELFOC Lenses

APPENDIX D: TRANSMISSION LINE THEORY ${ }^{26}$

The interactions between wiring and circuitry in high-speed systems are more easily determined by treating the interconnections as transmission lines. A brief review of basic concepts is presented and simplified methods of analysis are used to examine situations commonly encountered in digital systems.

For the great majority of interconnections in digital systems, the resistance of the conductors is much less than the input and output resistance of the circuits. Similarly, the insulating materials have very good dielectric properties. These circumstances allow such factors as attenuation, phase distortion, and bandwidth limitations to be ignored. With these simplifications, interconnections can be dealt with in terms of the characteristic impedanced and propagation delay.

The two conductors that interconnect a pair of circuits have distributed series inductance and distributed capacitance between them, and thus constitute a transmission line. For any length in which these distributed parameters are constant, the pair of conductors have a characteristic impedance z_{0}. Whereas quiescent conditions on the line are determined by the circuits and terminations, Z_{0} is the ratio of transient voltage to transient curient passing by a point on the line when a signal change or other electrical disturbance occurs. The relationship between transient voltage, transient current, characteristic impedance and the distributed parameters is expressed as follows:

$$
\frac{v}{t}=z_{0}=\sqrt{\frac{L_{0}}{C_{0}}}
$$

where $\mathrm{L}_{0}=$ inductance per unit length, $\mathrm{C}_{0}=$ capacitance per unit
length. Z_{0} is in ohms, L_{0} in henries, C_{0} in farads.
A transmission line with a terminating resistor is shown in figure $D-1$. As indicated, a positive step function voltage travels from left to right. To keep track of reflection polarities, it is convenient to consider the lower conductor as the voltage reference and to think in terms of current flow in the top conductor only. The generator is assumed to have zero internal impedance. The initial current I_{1} is determined by V_{1} and Z_{0}. If the terminating resistor matches the line impedance, the ratio of voltage to current traveling along the line is matched by the ratio of voltage to current which must, by ohm's law, always prevail at R_{T}. From the viewpoint of the voltage step generator, no adjustment of output current is ever required; the situation is as though the transmission line never existed and R_{T} had been connected directly across the terminals of the generator. From the R_{T} viewpoint, the only thing the line did was delay the arrival of the voltage step by the amount of time T.

Figure D-1: Assigned polarities and directions for determining reflections

When R_{T} is not equal to Z_{0}, the initial current starting down the line is still determined by V_{1} and z_{0} but the final steady state current, after al 1 reflections have died out, is
determined by V_{1} and R_{T} (ohmic resistance of the line is assumed to be negligible). The ratio of voltage to current in the initial wave is not equal to the ratio of voltage to current demanded by R_{T}. Therefore, at the instant the initial wave arrives at R_{T}, another voltage and current wave must be generated so that ohm's low is satisfied at the line-load interface. This reflected wave starts to return toward the generator. Applying Kirchoff's laws to the end of the Ine at the instant the initial wave arrives, results in the following:

$$
I_{1}+I_{R}=I_{T}=\text { current into } R_{T}
$$

Since only one voltage can exist at the end of the line at this instant of time, the following is true:

$$
\mathrm{v}_{1}+\mathrm{V}_{\mathrm{R}}=\mathrm{V}_{\mathrm{T}}
$$

Combining these two equations results in:

$$
L=\left(R_{T}-z_{0}\right) /\left(R_{S}+z_{0}\right)=\text { reflection coefficient }
$$

With R_{T} ranging between zero (shorted line) and infinity (open line), the coefficient ranges between -1 and +1 respectively.

When a reflected voltage arrives back at the source (generator), the reflection coefficient at the source determines the response to V_{R}. The coefficient of reflection at the source is governed by Z_{0} and the source resistance R_{S} and can be calculated by replacing R_{L} with R_{S} in the equation for the reflection coefficient at the load. If the source impedance matches the line impedance, a reflected voltage arriving at the source is not reflected back toward the load end. If neither source impedance nor terminating impedance matches the characteristic impedance, multiple reflections occur; the voltage at each end of the line comes closer to the final steady state
value with each succeeding reflection.
Terminating a line at the receiving end with a resistance equal to the characteristic impedance is called parallel termination. FIOOK circuits do not have internal pull-down resistors on outputs, so the terminating resistor must be returned to a voltage more negative than $V_{O L}$ to establish the low-state output voltage from the emitter follower. A-2 volt termination return supply is commonly used. This minimizes power consumption and correlates with standard test specifications for ECL circuits. A pair of resistors connected in series between ground (VCC) and the VEE supply can provide the Thevenin equivalent of a single resistor to $-2 V$ if a separate termination supply is not available. The average power dissipation in the Thevenin equivalent resistors in about 10 times the power dissipation in the single resistor returned to -2 volts. For either parallel termination method, decoupling capacitors are required between the supply and ground.

An additional requirement on the maximum value of R_{T} is related to the value of quiescent $I_{O H}$ current needed to insure suffecient negative-going signal swing when the ECL driver swetches from the high state to the low state. The NPN emitterfollower output of the ECL circuit cannot act as a voltage source driver for negative-going transitions. When the voltage at the base of the emitter follower starts going negative as a result of an internal state change, the output current of the emitter follower starts to decrease. The transmission line responds to the decrease in curcent by producing a negative-going change in
voltage. The ratio of the voltage change to the current change is, of course, the characteristic impedance. Since the maximum decrease in current that the line can experience is from $I_{o f}$ to zero, the maximum negative-going transition which can be produced iss the proauct $\mathrm{I}_{\mathrm{OH}}{ }^{*} \mathrm{Z}_{0}$.

If this product is greater than the normal negative-going signal swing, the emitter follower responds by imiting the current change, thereby controling the signal swing. If, however, the $I_{O H} z_{0}$ product is too small, the emitter follower is momentarily turned off due to insufficient forward bias of its base-emitter junctions, causing a discontinuous negative-going edge.

For this application:

$$
R_{\mathbf{T}}<1.64 * z_{0}+3.86 \text { ohms. }
$$

For a line terminated at the receiving endwitha resistance to 2 volts, a rough rule-of-thumb is that the termination resistance should not exceed line impedance by more than 50%.

The length of a stub branching off the line to connect an input should be limited to insure that the signal continuing along the line past the stub has a continuous rise, as opposed to rise (or fall) with several partial steps. The point where a stub branches off the line is a low impedance point. This creates a negative coefficient of reflection, which in turn reduces the amplitude of the incident wave as it continues beyond the branch point. If the stub length is short enough, however, the first reflection returning from the end of the stub adds to the attenuated incident wave and the first stub reflection provides a step-free signal, although its rise time will be
longer than that of the original signal. Satisfactory signal transitions can be assured by restricting stub lengths according to the recommendations for unterminated lines (Table D-2). The same considerations apply when the termination resistance is not connected at the end of the Iine; a section on the line continuing beyond the termination resistance should be treated as an unterminated line and its length restricted accordingly.

\mathbf{Z}_{0}	Number of Fan-out Loads		
	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{4}$
50	1.37		
62	1.33	1.13	0.95
75	1.25	0.95	0.75
90	1.18	0.85	0.52
100	1.15	0.82	0.49

*Length in inches
Unut load $=2 \mathrm{pF} . \delta=0148 \mathrm{~ns}$ rimen
Table D-l: Flook maximum worst-case line lengths for unterminated Microstrip, distributed loading

27
 Appendix E
 AT\&T ODL200 Lightwave Transmitter and Receiver Technical Information

INTRODUCTION
The ATST OOL 200 Lightwave Data Link Models Kit provides a means to investigate the benefits - וи
 in applying lundamental applications of the hightwave data link.
BASIC COMPONENTS IN THE ODL 200 LIGHTWAVE DATA LINK MODELS KIT Transmitter
The 1252 C Iransmitter is designed tor data rates up to $220 \mathrm{Mb} / \mathrm{s}$ (NRZ) and provides -19 dBm plementary bipolar inlegrated circuit (MCEIC) lechnology. It operates trom either a +4.5 volt (+VCC) or a -4.5 volit ($-V E E$) power supply with a maximum supply current of 260 mA and is mounted in a 16 -pin dual in-line package (DIP). The metal DIP should be grounded to provide a high degree of EMI/RF1 prolection. The integral tens-coupled oplical connector used by
the Iransmither mates with an AT\&T S ${ }^{12}$ Serees Multimode Fiber Optica Connector the Iransmither mates with an AT\&T ST" Serves Mullimode Fiber Optic Connector.
In addtion to a tong-wavelength, high-speed ligh-emitting diode (LED), the transmitter consists of a silicon integrated circuit and several discrate components. The transmitter is fully
compatible with 100 K ECL input data and produces binary 1320 nm optical output signals. All driver and bias circuits for the transmitter's InGaAsP high-radiance LED are included in the transmitter package (Figure 1). To minimize turn-on delay, the LED is biased at a small current
in the ofl condition.

ODL 200 LIGHTWAVE DATA LINK

December 1985

Difterential data is the normal inpul signal; however, single-ended signals can be used by connectung pin $8\left(V_{\mathrm{Be}}\right)$ to the unused dala input or data input (pin 10 or 12, respectively). Pin
focations are shown in Figure 2 .

A recommended wiring schematic for the 1252 C transmitter is indicated in Figures 3 A and 3 B . A maximum case lemperature of $70^{\circ} \mathrm{C}$ is suggested. The user should utilize a sound microwave wiring layout technique and provide a ground plane on the compenent side of the printed wir-
ing board, under the module. The use of sockets is detrimental. Bypass components should be localed as close to the module as possibte.

The 1352 C Heceiver, shown in Figure 4, includes circuit technology simitar to that in the 1252C

 of 10^{-2}. The receiver is designed to operate for data rales up to $220 \mathrm{Mb} / \mathrm{s}$.

Figure 4
The 1352 F receiver requires a +4.5 voll ($+V_{\text {CC }}$) power supply and the 1352 C receiver a -4.5 volt ($-\mathrm{V}_{\mathrm{EE}}$) power supply. Both operate with a maximum cufrent of 150 m A . A maximum case

To maintain maximum sensitivity, the negative supply must be quiet electrically with respect to ground, which is helped by the recommended fittering. Fegardless of the amplitude of the
power supply noise voltage, the slew rate (dViot) at the VEE pins ipins 15 and 16 , Figure $5 B$) should te less than $0.25 \mathrm{~V} / \mu \mathrm{s}$.

The appropriate plug to intertace with the ODL 200 is the P2020A.C-125 (Figure 7). Couplings. However, the P2020A-C-125 Connector plug will mate with three different couplings which in.
clude: Bayoneuflange C2000A-5, BayonelThreaded C2000A.2, and Bayoneuflosting C2000A-3 (Figure 8). These couplings provide for varied needs of connecting lightwave cable.

A high degree of EMI/RF' protection is provided by the grounded metal DIP-type receiver package; however, under adverse conditions, precautions should be taken to ensure the input
signals and power supply are "clean."
The signal theseshold, al pin 12 (Figure 2), provides an indication of an optical signal level. The logic "zero" state at pin 12 is used to flag a low or no optical input signal. During flagged threshold signal conditions, erroneous oulputs can be disregarded.
Lightwave Apparatus and Hardware
The multimode graded index lightguide cable included in the Models Kil provides a wide range of applications along with an upgrade capability lor the future. The fiber consists of a 62.5 km
diameter $G \theta$-doped silica core that provides a numerical aperture of 0.29 . The ous sice diameter ot the fiber is $125 \mu \mathrm{~m}$. The fiber is covered with a polyvinyl chloride (PVG) butfer jacket tor abrasive damage and corrosive protection, followed by another jacker which includes KEVLARs tiber
strengith members and an outer jacket (2.4 mm outside diameter) of PVC (Figure 6).

The connectors used are the ST Series Connectors. They provide a low-loss connection with stable performance. The precision design ellows for quick and easy instailation and ensures
accurate atignment of the fiber over a wide range of temperature and numidity. The connector accurate alignment of the fiber over a wide range of temperature and humidity. The connector tion networks, premises distribution, or cornputer connections.
All tools, supplias, and instructions needed to fiedd.mount connectors are supplied in a 1032A
Tool Kit. Replacement parts used in this kit can be obtained in the D-181338 Kit.

DATA LINK DESIGN

Mounting and Handlling

The transmitter and receiver modules are designed for direct circuil board mounting. The maximum lead soldering temperalure is $226^{\circ} \mathrm{C}$ for 10 seconds. Care should be taken when bend-

 bend radius (refer to the Installation Considerations section).
The loflowing procedures are recommended for manually soldering the modules onto a printed wiring board. The modules should be inserled into the board. Flux may be applied to the leads with a tin-lead composition of 60r4a is reccommended. Manual soidering should be performed with no more than a 45 -watt soldering iron with a tip temperature not to exceed $357^{\circ} \mathrm{C}$. Afler soldering, the board should be cleaned to remove flux, flux-reaction products, and solder particles. Cleaning should be conlined to the soldered side of a board. Chbrinated hydrocarbons such as 1, 1, 1-Tichloroethane or Perchloreethytgne may be used as long as there is
not direct application of the sotution to the component on the component side of the board.
 through unused holas, elc. It is acceptable ior isolated dropiets of solvent to fati on the modules.
 be handled as such. Dirt or dust in the connector or on the tens of the transmitter or receiver can cause optical power loss. The cover for the connectors should be left in place whenever
the lightguide cable is disconnected. insiallation Considerations
installation procedures for fightguide cable actually differ lattle from the procedures used for smatl gauge electrical wire. The lightguide cable used in the optical data link is designed for enced in offices where rearrangement of facilities is a l'equent occurrence. Installation in ducts and conduit or direct installation in walls, ceilings. and tloors is possible.
The lighlguide cable specifications which are important for installation are: 50 k psi
-32 to
1.5 inch
$0.58^{\circ} \mathrm{C}$
inch
\qquad Tensile strength (min) Bend radius (min)

C200OA-1 COUPLING
(BAYONET FLANGE]

C2000A. 2 COUPLING
BAYONET THAGACED

C2000A. 3 COUPLING
(BAYONET FLOATING)

ELECTRICAL CHARACTERISTICS

ODL 200 Transmitter
(VCC-VEE $=4.2$ to 4.8 V ; Operating Temperature: 0 to $70^{\circ} \mathrm{C}$), (Complementary Inputs ${ }^{2}$)

Parameter	Symbol	Min	Max	Unit
Input Data Voltage - Low ${ }^{3}$ Inpứt Data Voltage-High ${ }^{3}$	$\begin{aligned} & \mathrm{V}_{I L} \\ & \mathrm{~V}_{\mathrm{IH}} \end{aligned}$	$\begin{aligned} & -1.810 \\ & -1.165 \end{aligned}$	$\begin{aligned} & -1.475 \\ & -0.880 \end{aligned}$	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \end{aligned}$
Inpu: Current - Low ${ }^{4}$ Input Current -- High ${ }^{5}$	$\begin{aligned} & \text { IIL } \\ & \text { I/H } \end{aligned}$	0.5	$0 . \overline{350}$	$\begin{array}{r} \mu \mathrm{A} \\ m \mathrm{~A} \end{array}$
Reference Voltage ${ }^{6}$	VBB	-1.396	-1.244	V
Input Transition Time ${ }^{7,8}$	TIN	-	1.0	ns
Power Supply Current	ICC	-	260	mA
Data Rate [NRZ Encoding]	DR	40	220	Mb / s
Peak Optical Power (Typical Conditions ${ }^{9}$)	POH	$28(-15.5)$	-	$\mu \mathrm{W}(\mathrm{dBm})$
Optical Output ${ }^{10}$ High Low	POH POL	12.5 (-19)	$\begin{gathered} 88(-10.5) \\ \mathrm{POH} / 20 \\ (\mathrm{POH}-13) \end{gathered}$	$\begin{gathered} \mu \mathrm{W}(\mathrm{dBm}) \\ \mu \mathrm{W} \\ (\mathrm{dBm}) \end{gathered}$
Output Rise Time ${ }^{7,8}$ Output Fall Time ${ }^{7,3}$	$\begin{aligned} & \mathrm{tR} \\ & \mathrm{tF} \end{aligned}$	-	$\begin{aligned} & 1.8 \\ & 2.2 \end{aligned}$	ns ns
Pulse Width Distortion ${ }^{8,11}$	PWD	-	0.5	nS
Optical Wavelength	λ	1300	1350	nm
Spectral Width [FWHM]	$\Delta \lambda$	-	170	nm
Power Dissipation ${ }^{12}$	Pdiss	-	1.3	W

NOTES:

1. Refer to package thermal characteristics, p. 3.
2. These specifications assume the use of both inputs with complementary input data. Similar performance can be achieved when driven single-ended.
3. Measured from VCC with a 50Ω load to [VCC-2.0] V.
4. Measured with VIL min.
5. Measured with V_{IH} max.
6. Measured from Vcc.
7. Between 10% and 90% points.
8. Specified at a $200 \mathrm{Mb} / \mathrm{s}$ data rate. At lower data rates the maximum value scales inversely with the decrease in data rate
9. Value given is typical, not minimum.
10. Measured peak power coupled into $0.29 \mathrm{NA}, 62.5 / 125$ micron fiber at $+40^{\circ} \mathrm{C}$. Includes power supply and end-of-life (EOL) variations.
11. The PWD as measured with an input signal having negligible PWD.
12. With 4.8 V power supply and 50% dury cycle.

ELECTRICAL CHARACTERISTICS

ODL 200 Receiver
$\left(V C C[1352 \mathrm{~F}]-\mathrm{VEE}\left[1352 \mathrm{Cl}=4.2\right.\right.$ to 4.8 V ; Operating Temperature: 0 to $70^{\circ} \mathrm{C}^{1}$)
(€ठomplementary Outputs ${ }^{2}$)

Parameter	Symbol	Min	Max	Unit
Output Data Voitage - Low, ${ }^{3,4}$ Output Data Voltage-Low ${ }^{3}$	$\begin{aligned} & \text { VoL } \\ & \text { VoL } \end{aligned}$	$\begin{aligned} & -1.810 \\ & -1.830 \end{aligned}$	$\begin{aligned} & -1.620 \\ & -1.605 \end{aligned}$	$\begin{aligned} & v \\ & v \end{aligned}$
Output Data Voltage - High ${ }^{3,4}$ Output Data Voltage- High ${ }^{3}$	VOH VOH	$\begin{aligned} & -1.025 \\ & -1.035 \end{aligned}$	$\begin{aligned} & -0.880 \\ & -0.870 \end{aligned}$	$\begin{aligned} & \text { v } \\ & \text { v } \end{aligned}$
Current Drain on VCC	ICC	-	150	mA
Current Drain on VPD	IPD	-	75	$\mu \mathrm{A}$
Current Drain on VCCA ${ }^{5}$	ICCA	-	30	mA
Data Rate [NRZ Encoding]	DR	40	220	Mb / s
Optical Sensitivity - Typical Operating Conditions ${ }^{6}$ Optical Sensitivity - Worst Case ${ }^{7}$	$\begin{aligned} & \text { Pin } \\ & \text { PIN } \end{aligned}$	$\begin{aligned} & 0.8(-31) \\ & 1.1(-29.5) \\ & \hline \end{aligned}$	-	${ }_{\mu} \mathrm{W}(\mathrm{dBm})$ $\mu \mathrm{W}(\mathrm{dBm})$
Maximum Input Power	Pmax	-	$88(-10.5)$	$\mu \mathrm{W}$ (dBm)
Optical Wavelength for Rated Sensitivity	λ	1275	1375	nm
Puise Width Distortion ${ }^{8,9}$	PWD	-	1.2	ns
Output Rise Time 9 ,10 Output Fall Time ${ }^{9,10}$	$\begin{aligned} & \mathrm{tr} \\ & \mathrm{tF} \end{aligned}$	-	$\begin{aligned} & 1.4 \\ & 1.4 \end{aligned}$	$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$
Power Dissipation ${ }^{11}$	Pdiss	-	. 750	W
$\begin{aligned} & \text { Flag - Low }{ }^{12} \\ & \text { Flag-High } \end{aligned}$	$\begin{aligned} & \mathrm{V}_{\mathrm{FL}} \\ & \mathrm{~V}_{\mathrm{FH}} \end{aligned}$	$\begin{aligned} & -1.830 \\ & -1.035 \end{aligned}$	$\begin{aligned} & -1.605 \\ & -0.870 \end{aligned}$	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \end{aligned}$

NOTES:

I. Refer to thermal characteristics, p. 5.
2. Specifications assume the use of both outputs with complementary data. Similar performance can be achieved using either output individually.
3. The 1352 C is measured from ground with a 50Ω load to -2.0 V . The 1352 F is measured from VCCA with a 50Ω load to Vcca -2.0 V .
4. With a 4.5 V power supply.
5. With 50Ω loads on Data and Data to [VCC -2.0$] \mathrm{V}$ (1352F), to -2.0 V (1352C).
6. Vaiue given is typical, not minimum.
7. Peak power coupled from a $0.29 \mathrm{NA}, 62.5 / 125$ micron fiber at $220 \mathrm{Mb} / \mathrm{s}$ for a bit error rate of 10^{-9} at $+40^{\circ} \mathrm{C}$. Includes EOL.
8. The PWD as measured with a -18 dBm input signal having negligible PWD.
9. Specified at a $200 \mathrm{Mb} / \mathrm{s}$ data rate. At lower data rates the maximum value scales inversely with the decrease in data rate
10. Between 20% and 80% points with a 50Ω load to [VCC -2.0] V.
11. With 4.8 V power supply, 50% duty cycle and logic outputs terminated in 50Ω to VCC -2 V .
12. Measured from VCC with a 50Ω load to [VCC-2.0] V.

Appendix F
 Transmitter and Receiver
 Block Diagrams, Schematics and Timing Diagrams

TRANSMITTER BLOCK DIAGRAM

F-I

TRANSMITTER TIMING DIAGRAM
$F-3$

F- 4

RECEIVER, FHASE IOCKED LOOP SCHEMATIC

RECEIVER TIming diagram.
$F-6$

PHASE LOCKED LOOP Timing liagram

Appendix G

Data Sheets

F100101

Symbol	Characteristic	Min		Typ	Max		Unit	Condition	
441	Inpul High Current				350		$\mu \mathrm{A}$	$\mathrm{V}_{1 N_{1}}=\mathrm{V}_{\text {m(max }}$	
lee	Power Supply Current	-38		-26	-18		mA	inpuls	Open
	Characlerisitic	$\mathrm{Tc}_{\mathrm{c}}=0^{\circ} \mathrm{C}$		TC $=+25^{\circ} \mathrm{C}$ \|		$\mathrm{TC}=+85^{\circ} \mathrm{C}$		Unit	Condilion
Symbol		Min	Max	Min	Max	Min	Max		
$\begin{aligned} & \text { PPLH } \\ & \text { Phil } \end{aligned}$	Propagation Detay Data to Outpul	0.50	1.15	0.50	1.15	0.55	130	ns	
$\begin{aligned} & 1 \mathrm{TLH} \\ & \mathrm{THOL} \end{aligned}$	Transilion Time $20 \% 1080 \% .80 \% 1020 \%$	0.45	1.30	0.45	120	0.45	120	ns	rigures 1 and 2

\footnotetext{

Function Select Table			
So	S,	\mathbf{S}_{2}	Function
L	1	1	Parallel toad
L	L	H	Count Down
L	H	L	Shiti Lett
L	H	H	Count Up
H	L	L	Complement
H	1	H	Clear
H	H	1	Shite Rignt
H	H	H	

Inpuls									Outpuls					
MA	So			s2	CEP	Dacer	D_{3}	CP	Q	01	O_{2}	0	FC	Mode
L	L	1		L	\times	x	x	5	Pa	PI	P_{2}	P_{3}	L	Preset [Parallel
t	1	1		H	1	L	x	5		O-3)	minu	\$ 1	(1)	Count Down
L	L	L		H H	H \times	1	$\begin{aligned} & x \\ & x \end{aligned}$	X	$\begin{aligned} & Q_{0} \\ & Q_{0} \end{aligned}$	$\begin{aligned} & O_{1} \\ & 0_{1} \end{aligned}$	$\begin{aligned} & Q_{2} \\ & O_{2} \end{aligned}$	$\begin{aligned} & \mathrm{Q}_{3} \\ & \mathrm{O}_{3} \end{aligned}$	$\begin{aligned} & \text { (1) } \\ & \mathrm{H} \end{aligned}$	Count Down with CEF rot aclive Count Down with CET not active
L	L	H		L.	x	x,	\times	5	01	O_{2}	O_{3}	D3	D_{3}	Shift Lell
L	L	H		H	L	L.	x			O0.3)	plus	1	(2)	Count up
L	L	H H		H H	$\begin{aligned} & H \\ & X \end{aligned}$		$\begin{aligned} & x \\ & x \end{aligned}$	$\begin{aligned} & \mathrm{x} \\ & \mathrm{x} \end{aligned}$	$\begin{aligned} & \mathrm{O} \\ & \mathrm{O} \end{aligned}$	$\left\lvert\, \begin{aligned} & Q_{1} \\ & Q_{1} \end{aligned}\right.$	$\left\{\begin{array}{l} Q_{2} \\ Q_{2} \end{array}\right.$	$\left[\begin{array}{l} O_{3} \\ O_{3} \end{array}\right.$	$\begin{aligned} & \text { (2) } \\ & H \end{aligned}$	Count Uo with CEP not active Count Up with CET not active
1	H	L	L	L	x	X	x	5	\square_{0}	$\overline{O_{1}}$	O_{2}	万3	L	Invert
L	H	L	H	H	x	x	x	5	L	L	L	L	H	Glear
L	H	H	1		x	x	X	$\underline{5}$	Oo	00	O_{1}	02	O_{3}	Shitt Right
L	H	H	H	H	X	x	x	x	O_{0}	Q_{1}	Q_{2}	OJ	H	Hold
H	L	L	L		X	x								
H	L	4	H		x	1	X	x	L	L	L	\mathbf{l}	1	
H	L	L	H		x	H	x	x	L	L	L	$\left\lvert\, \begin{aligned} & l \\ & L \end{aligned}\right.$	$\begin{aligned} & \mathrm{L} \\ & \mathrm{H} \end{aligned}$	
H H	L	H H	L		x	x	x	x	L	L	L	L	L	
H		H	H		x	x	x	x				L	H	Asynchronous
H	H	L	L		x	x	x	x	L		L	L		Master Resel
H	H	L	H		x	x	x	x	L.	L	L	t	H	
H	H	H	L		x	\times	\times	x	L.	L	L	L	L	
H	H	H	H		\times	$x \quad x$	\times	x			L		H	

G-T

Logtc Dlegram

F100141

MC1648/MC1648M
 VOLTAGE-CONTROLLED OSCILLATOR

figure 1 - CIRCUIT SChematic

$\begin{array}{r} \text { Test } \\ \text { Temperature } \end{array}$	TEST VOLTAGE/CURRENT VALUES			
	(Volts)			mAdc
	$V_{1} H_{\text {max }}$	$V_{\text {ILmin }}$	V_{cc}	IL
MC1648				
$-30^{\circ} \mathrm{C}$	+2.00	+1.50	5.0	-5.0
$+25^{\circ} \mathrm{C}$	+1.85	+1.35	5.0	-5.0
$+85^{\circ} \mathrm{C}$	+1.70	+1.20	5.0	-5.0
MC1648M				
$-55^{\circ} \mathrm{C}$	+207	+1.57	5.0	-5.0
$+25^{\circ} \mathrm{C}$	$+1.85$	+1.35	5.0	-5.0
$+125^{\circ} \mathrm{C}$	$+160$	+1.10	5.0	-5.0

ELECTRICAL CHARACTERISTICS

Center Frasuoncy-100 MHz
Scanwigem -50 kHzid m
Vortical Scate $=10 \mathrm{~dB}$ idiv
figure 2 - spectral purity of signal at output
$\mathrm{BW}=10 \mathrm{kHz}$
Supply Voltage $=+5.0$ Volts
$G-13$

-This measurement guarantees the de potential at the bias point for purposes of incorporating a varactor tuening diode at this point.
$*$ - Frequency variation pver temperature is a direct function of the $\Delta C / \Delta$ Temperature and $\Delta L / \Delta$ Temperature.
ELECTRICAL CHARACTERISTICS

OPERATING CHARACTERISTICS

Figure 1 illustrates the circuit scmemaric for the MCi648. The oscillator incorporates positive feed. back. by coupting the base of transistor os to the collector of 07 . An automatic gain control (AGC) is incorporated to limit the current through the emitrer coupled paif of transistors 107 and 06 land allow optimum frequency response of the oscillator.

In order to maintain thehigh Q of the oscillator, and provide high spectral purity at the outpur. transistor Q4 is used to translate the oscillator 51 g . nal to the output differtontial pair $Q 2$ and 03. Q2 and Q3, in conjunction with output transistor Q1. provides a highly buffered outout which pro. duces a square wave. Transistors 09 and $01 t$ pro. vide the bias drive for the oscillator and outout buffer. Figure 2 indicates the high spectral purity of the oscillator output (pin 3).

When operating the oscillator in the voltage controlled mode (Figure 4), it should be noted that

FIGURE 4 - THE MC 1649 OPERATING IN THE VOLTAGE CONTAOLLED MODE

the cathode of the varactor diode (D) should be Diased at least 2 V EE above $V_{E E} \approx 1.4 \vee$ for pos. itive supply oparation).

When the MC1648 is used with a constant do voltage to the varactor diode. the output frequency will vary slightly because of internal noise. This variation is plotted versus operating trequency in Figure 5

FIGURE 5 - NOISE DEVIATION TEST CIRCUIT AND WA VEFORM

Oscillator Tank Componenrs

1		L
MHz	D	4 H
1010	Mvitis	100
1060	MU2115	23
60100	M 2106	015

 unply should o\& determined and minimzec prior to instime.

TRANSFER CHARACTERISTICS IN THE VOLTAGE CONTROLLED MODE USING EXTERNAL VARACTOR DIODE AND COIL. $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$
figure 6

figure?

figuage

- The 1200 onm rassior and the wode termana. Hom impedinct comsticute a 25 i allenuter probet Cota shall bect 07050 or mouvatere

Typical transfer characteristics for the oscillator in the voltage controlled mode are shown in Figures 6, 7, and 8, Figures 6 and 8 show transfor characteristics employing only the capacitance of the varactor diode fplus the input gapacitance of the oscillator, 6 pF typical). Figure 7 illustrates the osciltator operating in a voltage controlled mode with the output frequency range limited. This is achieved by adding a capacitor in parallel with the tank circuit as shown. The $1 \mathrm{k} \Omega$ resistor in F igures 6 and 7 is used to protect the varactor dioda during testing. it is not necessary as long as the de input voltage does not cause the diode to become forward biased. Tha larger.valued resistor (51 k Ω) in Figure 8 is required to provide isolation for the high.impedance functions of the two varactor diodes.

The tuning range of the oscillator in the voltoge controlled mode may be calculated as:

$$
\frac{f_{\text {max }}}{f_{\text {min }}}=\frac{\sqrt{C_{D}(m a x)+C_{S}}}{\sqrt{C_{D}(m i n)+C_{S}}}
$$

where $f_{\text {min }}=\frac{1}{2 \pi \sqrt{L\left(C_{D}(\max)+C_{S}\right)}}$
$\mathrm{C}_{\mathrm{S}}=$ shunt capacitance finput plus external capacitancel.
$C_{0}=$ varactor capacirance as a function of bias woftage.

Good RF and low frequency bypassing is necessafy on the power supply pins. (See Figure 2.)

Capacitors (C1 and C2 of Figure 4) should be used to bypass the AGC point and the VCO input fvaractor diodel. guaranteeing only dc levels at these points.

For output frequency operation between 1 MHz and 50 MHz a $0.1 \mu F$ capacitor is suffi, cient for $C i$ and $C 2$. At higher frequencies. smaller values of capacitance should be used; at lower frequencies, larger values of capacitance. At high frequencies the value of bypass capacitors depends directly upon the ghysical layout of the systern. All byoassing should be as close to the packago pins as possible to minimize unwanted lead inductance.

The oeak-to-peak swing of the tank circuit is set internally oy the AGC ecircuitry. Since voltage swing of the tank circuit provides the drive for the output buffer, the AGC potential directly stfects the ousput waveform. If it is desired to have a sine wave at the ourput of the MC1648, a series resistor is tied from the $A G C$ point to the most negative power potent. tial (ground if +5.0 volt supply is used, -5.2 volts if a negarive supply is used) as shown in Figure 10.

At frequencies above 100 MHz typ, it may be desprable to increase the rank circuit peak. to peak valiage in order to shape the signal ot the outpur of the MC1648. This is accom. plished by tying a series resistor $\{t \mathrm{k} \Omega$ mini. muml trom the $A G C$ to the most positive power potential $t+5.0$ volts if a +5.0 volt sup. ply is used. growind if a -5.2 wolt supply is used). Figure 11 illustrates this principle.

APPLICATIONS INFORMATION

The phase locked loop shown in Figure 9 illustrates the use of the MC1648 as a voltage controlled oscillator. The figure illustrates * frequency syothesizer useful in tuners for FM broadcast, general aviation. maritime and landmobile communications, amateur and CB receivers, The system operates from a singie +5.0 Vdc supply, and requires no internal translations, since all components are compatible.

Frequency generation of this type offers the advantages of single crystal operation. simple channet selection, and elimination of special cireuitry to prevent harmonic lockuo. Additional features include dc digital switching
(preferable over RF switching with a multipie crysial systeml, and a broad tange of tuning fup to 150 NAtz , the range being set by the varactor diodel.

The output freguency of the synthesizer loop is determined by the reference frequency and the number programmed at the program. mable counter: ${ }^{\text {fout }}=N f^{\prime}$ ef The channel spacing is equal to frequency (fref).

For additional information on applications and designs for phase locked.lopps and digital frequency synthesizers. see Mororola Applica. tion Notes AN-532A, AN.535, AN.553, AN. 564 or AN594.

FIGURE 9 - TYPICAL FREQUENCY SYNTHESIZER APPLICATION

Figure 10 shows the MC 1648 in the variable frequency mode operating from a +5.0 Voc supply. To obtain a sine wave at the output, a resistor is added from the AGC crecurt (pin 5) to VEE

Figure 11 shows the MC1648 in the variable frequency mode operating from a +5.0 Vde supply. To extend the useful range of the device (maintain a square wave cutput above $175 \mathrm{MH}_{2}$, a resistor is added to the $A G C$ circuit at pin 5 \{1 kehmminimum)

FIGURE 10-METHOD OF OETAINING A SINE.WAVE OUTPUT

Figure 12 shows the MC1648 operating trom +5.0 Vdc and +90 Vdc power supplies. This permits a higher voltage swing and higher output power than is possible from the MECL output [pin 3). Plots of outpur power versus total collector load resistance at pim 1 are given in Figures 13 and 14 for 100 MHz and 10 MHz operation. The total collector load includes R in parallel with $R p$ of 1 and Cl at resonance. The optimum value for R at 100 MH 2 is approximately 850 ohms.

FIGURE It - METHOD OF EXTENDING THE USEFUL RANGE OF THE MC 1648 ISQUARE WAVE OUTPUT)

FIGURE 12 - CIRCUIT USED FOR COLLECTOR OUTPUT OPERATION

FIGUAE 13 - POWER OUTPUT VEISUS COLLECTOR LOAD

FIGURE 14 - POWER OUTPUT versus COLLECTOR LOAD

MC1690

UHF PRESCALER
 TYPE D FLIP-FLOP

Lsuffix
CERAMIC PACKAGE
CASE 620

$V_{C C 1}=P_{\text {in }} 1$
$V_{\operatorname{CC} 2}=P_{\text {in } 16}$
$V_{E E}=\operatorname{Pin} 8$
$P_{0}=200 \mathrm{~mW}$ typ/pkg (No Load)
${ }^{1}$ Tog $=500 \mathrm{MHz}$ min

Number at end of term inal denotes pin number for L oackage

Characteristic	Symbol	$-30^{\circ} \mathrm{C}$		$+25^{\circ} \mathrm{C}$			$+85^{\circ} \mathrm{C}$		Unit
		Min	Max	Min		Max	Min	Max	
Power Supply Drain Current	IE	-	-	-		59	-	-	mAde
$\begin{gathered} \hline \text { Input Current } \\ \text { Pins } 7,9 \\ \text { Pins } 11,12 \\ \hline \end{gathered}$	1 inH	-	-	-		$\begin{array}{r} 250 \\ 270 \\ \hline \end{array}$	-	-	$\mu \mathrm{Adc}$
Switching Times				Min	Typ	Max	-	-	ns *
Propagation Delay	${ }^{\text {i p }}$ d	-	-	-	1.5	-			
Rise Time. Fall Time (10\% to 90\%)	${ }^{\text {t }}$, $\mathrm{t}^{\text {- }}$	-	-	-	1.3	-	-	-	ns
Setup Time	'setup	-	-	-	0.3	-	-	-	ns
Hold Time	thold	-	-	-	0.3	-	-	-	
Toggle Frequency	${ }^{6}$ Tog	500	-	500	540	-	500	-	MHz

Figure 1 - toggle frequency test circuit

FIGURE 2 - TOGGLE FREQUENCY WAVEFORMS

Note: All power supply and logic levels are shown shifted 2 volts positive.

(4)
 MOTOROLA

MC1OH158

Advance Information

MECL 10 KH HIGH-SPEED EMITTER-COUPLED LOGIC

The MC10H 158 is a member of Motorola's new MECL family. The $\mathrm{MCIOH158}$ is a quad two channel multiplexer with common input select. A "high"' level select enables input D00. D10, D20 and D30 and a "low" level select enables input D01, D11.021 and D31. This MECL 10 KH part is a functional/pinout duplication of the standard MECL 10 K family part. with 100% improvement in propagation delay and no increase in power-supply curtent.

- Procagation Delay, 1.5 ns Typical
- Power Dissipation, 197 nW Typical
- Improved Noise Margin 150 mV lover operating voitage and temperature range
- Voltage Compensated
- MECL $10 K$-Compatible

MAXIMUM RATINGS

Characteristic	Symbol	Rating	Unit
Power \$upply $\mathrm{VCCC}^{\text {a }}$ Oi	$V_{E E}$	-80100	Voc
Inout Vollage IVCC= 01	V_{1}	$010 \mathrm{VEE}^{\text {c }}$	Vdc
$\begin{aligned} & \text { Output Curremt } \text { - Continuous } \\ &- \text { Surge } \\ & \hline \end{aligned}$	$\mathrm{l}_{\text {out }}$	$\begin{aligned} & 50 \\ & 100 \end{aligned}$	m,
Operaitng Temperature Range	$\mathrm{T}_{\text {A }}$	0-75	${ }^{\circ} \mathrm{C}$
Sorage Temperalure Range - Plastic - Cerame	${ }^{T} \mathrm{sig}$	$\begin{aligned} & -55 \text { 10 } 150 \\ & -5510165 \end{aligned}$	$\begin{aligned} & { }^{\circ} \mathrm{C} \\ & { }^{\circ} \mathrm{C} \end{aligned}$

ELECTRICAL CMARACTERISTICS $V_{E E}=-5.2 \mathrm{~V} \pm 5 \%$

Characteristic	Symbal	0°		$25:$		75		Unit
		Min	Max	Min	Man	Min	Max	
Power Supply Current	le	-	53	-	48	-	53	ma
Inpul Current Hign Pins Fins 3-6 and 10-13	$1, \mathrm{nH}$	-	$\begin{aligned} & 475 \\ & 515 \end{aligned}$		$\begin{aligned} & 295 \\ & 320 \end{aligned}$	-	295 320	${ }_{\mu}{ }^{\text {A }}$
Input Current Low	1 m	05	-	05	-	03	-	- 4
Mign Output Vollage	VOH	-102	-084	-098	-081.	-092	-0735	Vac
Low Output Voltage	V_{OL}	-195	-i 63	-195	-163	-195	-1 60	V dc
High Input Voltage	V_{IH}	-117	-0.84	-1 13	-0.81	-107	-0.735	Vode
Low Inout Voltage	V_{12}	-195	-148	-1.95	-148	-1.95	-145	Vdc

AC PARAMETEAS

Propagation Delay Data Serect	${ }^{1} \mathrm{pd}$	$\begin{aligned} & 10 \\ & 10 \end{aligned}$	$\begin{aligned} & 19 \\ & 29 \end{aligned}$	$\begin{aligned} & 10 \\ & 10 \end{aligned}$	$\begin{aligned} & 18 \\ & 2.7 \end{aligned}$	10 10	$\begin{aligned} & 20 \\ & 29 \end{aligned}$	ns
Bise Iime	$L_{\text {f }}$	07	22	07	20	0.7	22	ns
Fall Tirme	18	07	22	07	2.0	0.7	2.2	ns

NOTE:
Each MECL IOKH series crewit has been designed to meet the de specificatons shown in the tesi table, atter thermal equilbrym has been escablished The curcuit is in a tebit socket or mounted on a printed circuil board and transverse air flow greafer then 500 innear tpm is mamiamed Outpuns are terminated through a 50 ohrn resistor $10-20$ voits
This document contains information on a new product. Specifications and infermation hergin arte subject to change withoul notice.

PHASE-FREQUENCY DETECTOR

The MC12040 is a phase-frequency detector intended for use in systems requiring zero phase and frequency difference at lock In combination with a voltage controlled oscillator isuch as the MC1648), it is useful in a broad range of phase-locked loop applications. Operation of this device is identical to that of Phase Detector \#1 of the MC4044. A discussion of the theory of operation and applications information is given on the MC4344/4044 data
sheet.

Operating Frequency $=80 \mathrm{MHz}$ typical

PHASE-FREQUENCY DETECTOR

PiN ASSIGNMENT

NC - No Connection

ELECTRICAI CHARACTERISTICS

The MC12040 has been designed to meet the de specifications shown in the test table after thermal equilibrium has been establisbed. Outputs are terminated through a 50 ohm resistor to +3.0 V for +5.0 V tests and through a 50 ohm resistor to -2.0 V for -5.2 V tests.

MC12040

PRF $=5.0 \mathrm{mHz}$
Duty Cycle $=50 \%$ $\mathrm{t}+=\mathrm{t}-=1.5 \mathrm{~ns}=0.2 \mathrm{~ns}$

NOTES:

1. All input and output cables to the scope are equal lengths of 50Ω coaxial cable.
2. Unused input and outputs are connected to a 50Ω resistor to ground.
3. The device under test must be preconditioned before performing the ac tests. Preconditioning may be accomplished by appiying pulse generator 1 for a minimum of two pulses prior to pulse generator 2 . The device must be preconditioned agair when inputs to pins 6 and 9 are interchanged. The same technique applies.

MC12040

APPLICATIONS INFORMATION

The MC12040 is a logic network designed for use as a phase comparator for MECL-compatible ingut signals. It determines the 'lead" or "lag"' phase relationship and the time difference between the leading edges of the waveforms. Since these edges occur only once per cycle. the detector has a range of $\pm 2 \pi$ radians.

Operation of the device may be illustrated by assuming two waveforms, R and V (Figure 1), of the same frequency but differing in phase. If the logic had established by past history that R was leading V, the U output of the detector (pin 4) would produce a positive pulse width equal to the phase difference and the D output (pin 11) would simply remain low.

On the other hand, it is also possible that V was leading R (Figure 1), giving rise to a positive pulse on the D output and a constant low level on the U output pin. Both outputs for the sample condition are valid since the determination of lead or lag is dependent on past edge crossing and initial conditions at start-up. A stable phase-locked loop will result from either condition.
Phase error information is contained in the output duty cycle - that is, the ratio of the output pulse width to total period. By integrating or low-pass filtering the outputs of the detector and shifting the level to accommodate ECL swings, usable analog information for the voltagecontrolled oscillator can be developed. A circuit useful for this function is shown in Figure 2.
Proper level shifting is accomplished by differentially

FIGURE 1 - TIMING DIAGRAM

driving the operational amplifier from the normally high outputs of the phase detector (\bar{U} and $\overline{\mathrm{D}})$. Using this technique the quiescent differential voltage to the operational amplitier is zero lassuming matched " 1 " levels from the phase detector). The \mathbb{U} and $\overline{\mathrm{D}}$ outputs are then used to pass along phase information to the operational amplifier. Phase error summing is accomplished through resistors R1 connected to the inputs of the operational amplifer. Some R-C filtering imbedded within the input network (Figure 2) may be very beneficial since the very narrow correctional pulses of the MC12040 would not normally be integrated by the amplifier. General design guides for calculating R1, R2, and C are included in the MC4044 data sheet. Phase detector gain for this configuration is approximately 0.16 voltsiradian.
System phase error stems from input offset voltage in the operational amplifier, mismatching of nominally equal resistors, and mismatching of phase defector "high" states between the outputs used for threshold setting and phase measuring. All these effects are reflected in the gain constant. For example, a 16 mV offset voltage in the amplifier would cause an error: of $0.016 /$ $0.16=0.1$ radian or 5.7 degrees of error. Phase error can be trimmed to zero initially by trimming either input offset or one of the threshoid resistors (R1 in Figure 2). Phase error over temperature depends on how much the offending parameters drift.

FIGURE 2 - TYPICAL FILTER AND SUMMING NETWORK

ANALOG DEVICES

Ultra High-Speed 6-Bit Monolithic ADC

FEATURES

6-Bit, 75 MHz Minimum Word Rates
No T/H Required
$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ Temperature
Overflow Bit for Cascading Units
APPLICATIONS
Image Processing
Video Digitizing
Radar Digitizing
Military Systems

GENERAL DESCRIPTION

The AD9000 AD Converter is another addition to the expanding line of monolithic high-speed data converters available from Analog Devices. As model number AD 9000 SD , this 6 -bit, 75 MHz A/D can be operated over a temperature range extending from $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$, making it useful for a variery of applications in a wide diversity of environments. For applications requiring operation from 0 to $+70^{\circ} \mathrm{C}$, the AD 9000 JD is the recommended choice.
The AD 9000 is a "flash" converter which uses 64 paralle! comparators to digitize fast-moving analog input signals without the need for external track-and-hold (T/H) circuits. An overflow bit can be used for connecting multiple units in a cascade arrangement to obtain up to eight bits of digital data at MHz word rates.

Two cascaded devices can be used to obtain seven bits, and four units will provide eight bits of ECL-compatible output data.
Careful design rechniques assure temperacure coefficients which allow the unit to be operated over extended temperature ranges. The flexibility and usefulness of the AD9000 are aiso enhanced by its ability to operace with maximum positive and negative reference voltages applied simultaneously, as contrasted with other flash converters which often limit the user to a small range of voltage within the extremes.
All models of the AD9000 are packaged in standard ceramic DIP 16 -pin conligurations. Units processed to the requirements of MIL-STD-883, Merhod 5004, are also available for applications which require them.

Information furnished by Analog Devices is believed to be accurate and reliabie. However, no responsibility is assumed by Analog Devices for its usg; nor for any infringements of patents or other rights of third partios which may result from its use. No license is granted by implicition or otherwite under any patent or petent rights of A nagog Devices.

SPECIFICATIONS

(typical ($a+25^{\circ} \mathrm{C}$ and nominal power supplies unless otherwise noted)

DCACCCRACY
Nonlinearity vs. Temperature Differential Linearity

> Monotonsery

DYSiAMICCHARACTERISTICS In -Band Harmonics!
de to INEz
$-V_{R /: F}=-V_{\text {RIF }}=0.512 \mathrm{~V}$
$-V_{\text {REL }}=-V_{\text {R1:1 }}=1.02+\mathrm{V}$
$-V_{R 1: 1}=-V_{\mathrm{RII}}=2.048 \mathrm{~V}$
I. $\mathrm{MH} z$ to 5 MHzi
$+V_{\mathrm{REF}_{1:}}=-\mathrm{V}_{\mathrm{Rt} 1]}=0 . \S_{12} \mathrm{~V}$
$+\mathrm{V}_{\mathrm{RIIT}}=-\mathrm{V}_{\mathrm{Rt}:}=1.024 \mathrm{~V}$
$+V_{H_{t: 1}}=-V_{\mathrm{RE}: 1}=2.048 \mathrm{~V}$
(MHz wo. MHz)
$+\mathrm{V}_{\mathrm{REF}}=-\mathrm{V}_{\mathrm{RIII}}=0.512 \mathrm{~V}$
$+V_{\text {REF }}=-V_{\text {RBI: }}=1.024 \mathrm{~V}$
$-V_{\mathrm{git}}=-\mathrm{V}_{\mathrm{Ra}} \mathrm{II}=2.048 \mathrm{~V}$
Conversion Time
Conversion Rate
Aperture Uncertainiv(Jitter)
Aperture Time (Delay $1\left(\mathrm{~T}_{\mathrm{a}}\right)$
Setup Time (a $)^{5}$
Hold Time $\left(\mathrm{I}_{\mathrm{h}}\right)^{6}$
Signal Transition Time ${ }^{\top}$
Input to Output Low (t_{r}-)
Input to Output High st mo $^{+}$)
Signal to Noise Ratio (\$NR) ${ }^{\text {a }}$
$-V_{R I F}=-V_{\text {REF }}=0.512 \mathrm{~V}$
$+V_{\mathrm{RHF}}=-V_{\mathrm{RIFF}}=1.024 \mathrm{~V}$
$-V_{R H I T}=-V_{R I P F}=2.048 \mathrm{~V}$
Signal to Noise Ratio SSR *
$-V_{R E: 1}=-V_{\text {RIT: }}=0.512 \mathrm{~V}$
$-V_{\text {RIt: }}=--V_{\text {REIt }}=1.024 \mathrm{~V}$
$-V_{\mathrm{RI}: F}=-\mathrm{V}_{\mathrm{RtFF}}=2.048 \mathrm{~V}$
Noise Power RatioiNPR) ${ }^{10}$
$-\mathrm{V}_{\mathrm{Rta}}=-\mathrm{V}_{\mathrm{R} \text { [if }}=0.5 \mathrm{~J} 2 \mathrm{~V}$
$-V_{\text {REF }}=-V_{\text {REF }}=1.024 \mathrm{~V}$
$-\mathrm{V}_{\mathrm{RLII}}=-\mathrm{V}_{\mathrm{REI}}=2.048 \mathrm{~V}$
Transient Response"
Overvoltage Recovery ${ }^{2}$
ANALOG $\operatorname{NPPUT}\left(A_{t N}\right)$
Voltage Range, Raced Performance
Input Type
[input Current
Hold (Latch) Mode
Track (Sample) Mode ${ }^{13}$
[neut Capacitance ${ }^{1+}$
!impedance ${ }^{13}$
Frequency Response ${ }^{15}$
(75 MHz Encode Rate)
$+\mathrm{V}_{\text {REF }}=-\mathrm{V}_{\text {REF }}=0.512 \mathrm{~V}$
$+\mathrm{V}_{\text {REF }}=-\mathrm{V}_{\text {REF }}=1.024 \mathrm{~V}$
$+\mathrm{V}_{\text {REF }}=-\mathrm{V}_{\text {REF }}=2.048 \mathrm{~V}$
REFERENCE INPUT ${ }^{-}$
Positive Reference (+ Y_{RE})
Negative Reference (- $\mathrm{V}_{\mathrm{REF}}$)

Resistance

Bandwidth Small Sispai, 3dB
Large Signal, dB

Notis

'Enswde Rate 75 MH ; Analege Inpul $=1 \mathrm{kH7}$

inpurs bhyw in

atheve mumituan shuwn. vee Figure + lise rypual retalumitup twetween
madur mput trequemaer dend enciede rates.

 digital nutput so te bernerated by the latith.
*Thers internal ume tet by design and is the mumum ume aicer positive

 and enciude rare af 20.3 H .
${ }^{14}$ For tull-wale wep input. t-hi aturaty attaned an speaticel ame.

14verudrate

MECHANICAL DIMENSIONS
Dimensions shown in inches and (mm).

Outine \& Pin Designations

Parameter	Units	Lower Limit	Upper Limit	PIN 1 2	SYMBOL - V_{5} $\mathrm{A}_{\mathrm{GND}}$	FUNCTION - 5.2v nega tive supply voltage analog grouad
Supply Voltages				3	V_{H}	HYSTERESIS CONTROL
$+\mathrm{V}_{\mathrm{S}}$	Volts	-0.3	$+6.0$	4	Encooe	ENCODE COMMANDINPUT
- V_{s}	Volts	- 6.0	+6.0 +0.3	5	$\mathrm{C}_{\text {Amit }}$	negailve voltage reference analoginput
Analog $\operatorname{lnpus}\left(\mathrm{A}_{\text {LN }}\right)$	Volts	-3.0	+3.0	7	$+\mathrm{V}_{5}$	+5VPOSITIVE SUPPLY VOLTAGE
Encode Command Input	Volts	-6.0	0.0	9	$\stackrel{+\mathrm{V}_{\text {reF }}}{+8}$	POSITIVE VOLTAGE REFERENCE
Reference Inpuss				10 11	$8 \mathrm{ET5}$	EIt 5 OUTPut
- $\mathrm{V}_{\text {Rei }}$	Voits	- 3.0	$+3.0$	11 12	EIT 4 BIT	BIT 4 OUTPUT
$-V_{\text {REF }}$	Volts	- 3.0	+3.0	13	BIT 2	BIT 2 OUTPUT
Hysteresis Control Input	Volts	0	$+30$	$\begin{aligned} & 34 \\ & 15 \\ & 16 \end{aligned}$	BIT, overflow D	MOST SIGNIFICANT BIT IMSBI OUTPUT OVERFLOW BIT OUTPUT digital ground
Temperature Operating				$\stackrel{\text { NOT }}{\text { TOG }}$	GND (PIN 2) ER AS clos	$\mathrm{O}_{\text {GNo }}$ IPIN 161 SHOULD BE CONNECTED to case as possible.
AD9000SD	${ }^{\text {C }}$	- 55	+125			
AD9000JD	${ }^{\circ} \mathrm{C}$	0	+ 70			
Storage	${ }^{\top} \mathrm{C}$	-55	- 150			
Lead Soldering	${ }^{\circ} \mathrm{C}$		+300			

THEORY OF OPERATION

Refer to the Block Diagram of the AD9000.
Reference voltages ($+V_{\text {REF }}$ and $-V_{\text {REF }}$) applied across an array of identical resistors establish the analog operating span of the unit ($\left.+\mathrm{V}_{\text {REF }}\right)-\left(-\mathrm{V}_{\text {REF }}\right)$. The 64 resistors in the array divide the range into quancization levels equal to incervals of one least significant bit (LSB) between each resistor.
Each tap of the resistor array is connected to its associated voltage comparator input; the other inpur of each comparator is connected to the analog input ($\mathrm{A}_{\text {IN }}$) signal. In this way, the comparator stages simultancously compare the analog input with each one of the 64 (including OVERFLOW) quantization levels within the analog span set by the reference voltages.
Any comparator whose reference level is less than the analog input voltage will change its output state to a digital " 1 ". Cornparators whose reference levels are greater than the analog input will remain at digital " 0 ".
Depending on the value of $A_{\text {IN }}$, anywhere from none to 64 comparators might have digital " 1 " at their outputs; the remaining comparators witl be at digital " 0 ". Obviously, processing that many bits of digital information is impractical if the data remain in this type of unwieidy format.
Wired-or logic circuits within the AD9000 re-encode the comparator outputs into a manageable, binary format of six bits of parallel data; along with an overflow bit which allows cascading

- units to obtain higher resolution.

The outputs of the comparators are applied to latches controlled by the ENCODE input. When the encode command is low (digital " 0 "), the latches are transparent; this is the track (sample) mode of the AD9000.
When the ENCODE input changes to high (digital " 1 "), the latches go into a "hold" (latch) condition, "freezing" the most recent digital outputs of the comparators and applying them to the encoding circuits.

The signal beld in the latches is converted to binary form by the encoders and applied to the output stages as a six-bit digital representation of the analog signal which was present at the comparator inputs at the instant the ENCODE command made the change to the "hold" mode.
After 5-7 nanoseconds in the "hold" mode, the ENCODE input again cransitions to a "track" condition; and the six biss of parallel data (but not the OVERFLOW output) return to zero (RZ). The "track" portion of the ENCODE command is 4-6 nanoseconds and during this incerval the latches respond to the new state of the comparator outputs. The ENCODE signal then transitions again to the hold/latch (digital " 1 ") mode and the cycle repeats. Track mode and hold mode intervals are dependent on duty cycle; times cited here are approximations for an encode frequency of 75 MHz .
Time relationships of the hold/latch mode and trackisample mode of the ENCODE command are often influenced by the word rate selected by the user. At higher rates, it may be desirable to shorten the "hold" portion and lengthen the "track" portion; this technique can often enhance overall performance of the unit.
There is no need for an external track-and-hold circuit because the latches are performing the track/hold function. The aperture uncertainty (jitter) and aperture time (delay) specifications shown on the Specifications Table are "worst case" specs for the individual comparacor cells, but are valid for the AD9000 because they manifest themselves as converter characteristics
The good linearity rempco of the AD9000 is the result of using matched diffused resistors in the input network. Linearity in this type of converter is dependent primarily on the tracking of resistors; expressed in another way, resistance ratios are more important than absolute resistance values. Comparator thresholds in the AD9000 remain constant within a small fraction of ILSB over the complete operating remperature range because of the close tracking of the resistors within the network. The temperature coefficients of comparator input bias currents and initial offset voitages which contribute to nonlinearity are kept small in the design of the $A D 9000$ to minimize their effects.

Low offset voltages in the comparators are critically important for establishing the lower timit of the analog span set by the voltage references. When the reference voltage across the resistor chain decreases (the difference between $+\mathrm{V}_{\mathrm{REF}}$ and $-\mathrm{V}_{\mathrm{REF}}$ becomes less), the smaller value of the LSB approaches the value of the "worst case" comparator offset voltage. As the two get closer to one another, increasing linearity errors can restrict the lower limit of the analog span if comparator offset is relatively large.

The upper limit of the analog span is established by the commonmode range of the comparators because this range sets the maximum differential between $+V_{\text {REF }}$ and $-V_{R E F}$. In this characteristic, too, the design of the AD9000 suggests its use instead of some compering devices.
Unike some units, the AD9000 ailows maximums of positive and negative reference voltages to be applied simultaneously. In some "flash" A/D's, the analog span is limited to some small range within the range of references, as opposed to being equal to the extremes. The ability of the AD9000 to operate with fullscale references improves its usefulness to the designer by imposing fewer constraints on operating conditions.
Like all flash converters, the input resistance of the AD9000 varies as a function of analog input voltage. This is because the individual comparators draw no current until the input voltage exceeds the reference voltage of the comparator; after that, the comparator's input current remains essentially constant. Consequently, the converter's input current and input resistance increase in a series of small steps as successive comparators are operated by an increasing analog input.
The inpur capacitance of the unit is the sum of the junction capacitances of the individual comparators. For many flash converters, this total is sometime sufficiently high to require a low-impedance driving source for the analog input. In the AD9000, however, input capacitance is typically 30 pF , which is considerably lower than many competing devices and imposes fewer restrictions on the driving source.

AD9000 TIMING DIAGRAM

Refer to Figure 1, AD9000 Timing Diagram.

Figure 1. AD9000 Timing Diagram
The comparator input shown on the top of the diagram is the analog input applied to one of the 63 comparators used to establish the digital value of the output word. The latch output is the latch associated with that comparator.
Each time the analog input applied to the comparator exceeds the reference level of the comparator, the corresponding latch output transitions to a digital " 1 " level.

When the encode command is at -0.9 V (digital " l ") and the latch outut is at digital " 1 ", a bit output associated with the comparatorilatch combination will appear at the output. This statement is true only if:
A. The latch output is at digital " 1 " for a minimum of two nanoseconds before the positive-going leading edge of the encode signal (t_{s}).
B. The larch output remains an digital " 1 " for a minimum of two nanoseconds after the positive-going leading edge of the encode signal (t_{h}).
In Figure 1, there is no bit outpur associated with encode command \# 1 because the latch output was at the digital " 1 " level for less than the required two nanoseconds before the encode command changed. Encode command \#2 however, combines with the same latch output to cause a bit output to appear.
At first glance, it might appear encode command \#5 should combine with the second latch ourput to cause a bic output. It does not, however, because the latch output did not remain at a digital " 1 " level for a minimum two nanoseconds after the positivegoing leading edge of the encode command.
Like I_{s} and t_{h}, the latch delay interval shown in Figure 1 is based on internal timing and is approximately one nanosecond long, but has oniy academic interest for the user. The important time intervals for proper use of the AD9000 are conversion time (typically 13 ns); and signad transition time from the inpur to a positive output ($t_{p d}+$), and a negative output ($t_{p d}-$). Both signal transition times are typically lons.
In Figure 1, the widths of the digital "1" latch signals vary because of interaction with the hold commands. The first one is longer than normal because of encode pulse \#2 causing the latch to continue to hold the "l" level. The second latch output is the expected width; while the third is shorter than normal because of encode pulse \#6, which delays its transition by keeping it latched at digital " 0 ".

APPLYING THE AD9000

The wired-or logic used in the AD9000 causes the data bits to go low (logic " 0 ") whenever the OVERFLOW bit goes high. This characteristic allows two or more AD9000's to be operated in a cascaded arrangement when more than six bits of resolution are required.
When operating as a single 6 -bit A / D, however, that feature of the AD9000 might be undesirable. This is because analog inpurs greater than the positive reference voltage will appear as digital outputs of all " 0 ", the same digital output expected of maximum negative inputs. The OVERFLOW bit can serve as a "flag" by going to digital " 1 " when the positive reference is exceeded.
For some applications, it may be preferable to have the logic output bits "lock up" at digiral " 1 " for positive overvoitages; and digital "0" for negative overvoltages.
This can be accomplished with external logic, as shown in Figure 2, a typical connection for 6 -bit operation of the AD9000.
A hex AND gate is used to bring the digital outputs high any time the OVERFLOW bit indicates the positive reference has been exceeded; this gate is wire-ored with the outputs of the AD 9000 .
Figure 2 contains other derails on the preferred method for connecting the AD9000 into circuit applications. The suggested buffer amplifier for the analog input is the Analog Devices'

Figure 2. AD9000 6-Bit Operation

ADLH0033 or HOS-100; for the two reference voltages, AD741 devices are recommended. These high performance amplifiers are available in various models, making it easy for the user to select the unit best suited for his application.
The outpurs of the reference buffer amplifiers are capacitively bypassed to help prevent noise from interfering with the per-
formance of the AD9000. The ENCODE input is terminated in 50Ω connected to $-2 V$; the CLOCK and digital outputs shown in Figure 2 are terminated in 100 , also to $-2 V$.
If preferred, the hysteresis input (V_{H}) can be left floating, but experience indicates operation of the AD9000 may be improved with a variable voltage applied; this is particularly true at higher word rates.
Refer to Figure 3, which shows the effect of varying hysteresis control voltages.

Figure 3. Comparator Output vs. Hysteresis Voltage
In this illustration of a typical comparator's output versus changes in hysteresis voltage, the combination of the two results in a "family" of classic hysteresis curves. The analog input ($\mathrm{A}_{1 \mathrm{~N}}$) voltage is measured in millivolts at the input of the comparator; the other comparator input, of course, is the voltage established by the cap on the resistor array discussed earlier. The comparator outpur shown on the vervical scale is internal to the AD9000 and appears at the output as an ECL-level signal.

For purposes of discussion of this particular comparator, $+\mathrm{V}_{\mathrm{RLF}}=-\mathrm{V}_{\mathrm{REF}}=0 \mathrm{~V}$. Under these circumstances, the threshold of the iliustrated comparator is close to 0 mV . The thresholds of adjacent comparators would be at slightly differenc values, but the V_{H} hysieresis voltage would have the same general effect on the comparators' outputs.
Basically, the variations in hysteresis voltages change the gains of the comparators and slightly alter their outputs, as shown in Figure 3. In many applications, V_{H} could be left tloating, which establishes a hysteresis voltage of approximately +1.3 V . In other applications, however, the ability to introduce a stnall, predictable amount of hysteresis can enhance the AD9000's performance.
The hysteresis control input voltage can vary over a range of 0 V to +3.0 v , with voltages on the lower end of this span having only negligible effect. Variations between 0 V and approximately +0.5 V cannot generally be detected as having an impact on the comparator gain.
The interaction between analog input frequencies and the encoding word rate is shown in Figure 4.

Figure 4. Analog lnput vs. Encode Rate
The "Nyquist rate" is shown as a dotted line extending diagonally from de to an analog input of 50 MHz , and a word rate of 100 MHz . As illustrated, the range of the analog input reference has a major effect on how closely the AD9000 approaches the Nyquist criteria.
In this figure, the analog inpur frequencies which are shown are the typical frequencies a user can expect to digitize without
missing codes. Note that as the "spread" of the reference voltages becomes larger, the expected analog input frequency becomes lower.

CASCADING AD9000's FOR MORE BITS

Earlier, there was an allusion to the capability for connecting multiple AD9000 units in a cascade arrangement to obtain more than six bits of digital information. Two cascaded devices would be used to obtain seven bits; and four cascaded devices used for
eight bits of output. Although it is theoretically possible to generate multiple bits by employing this method, the practical limitations involved in doubling the number of AD9000's for each additional bit tend to restrict the technique to a maximum of eight bits of digital data.

A possible arrangement for achieving a 7 -bit A / D converter is shown in Figure 5.

Figure 5. Cascaded AD9000's

When cascading units, the reference-resistor strings are connected in series and driven at the high, low, and mid-scale points. The 6-bit outputs of the two AD9000's are wired together and perform an or function; the Most Significant Bit (MSB) is provided by the OVERFLOW output of $\mathrm{ADC} \# 1$.

If the analog input to the cascaded arrangement is below half-scale, the overflow bit of ADC \#2 is low, and so are its output bits. This means the outputs of ADC \#1 drive the output lines in response to the analog input.
When the analog input is above half-scale, the OVERFLOW bit of $A D C$ \# 1 (the $M S B$) is high and acts as a carry; all the digital output bits of $\mathrm{ADC} \# 1$ go low. $\mathrm{ADC} \# 2$ converts the residual upper half-range, and its outputs drive the outpur tines. The conversions are occurring in parallel, so there is no loss of speed,
regardless of whether or not one or both of the cascaded A / D 's are operating. The OVERFLOW bit of ADC \#2 is wire-ored with external logic in a fashion similar to the method used when operating the AD 9000 as a six-bit converter.
If this same technique is expanded to eight bits with four cascaded AD 900 devices, the analog reference span is divided into four equal parts; and a small amount of external logic is used to establish Bit 2 and minimize time skew. The need to double the divisions of the reference span with each succeeding bit is a major deterrent in extending this method beyond eight bits of resolution.
The loads used in cascade are the same as those with a single AD9000, i.e., the ENCODE input is terminated in 50Ω and the CLOCK and digital ourpurs are terminated in 1000 , with all loads connected to -2 V .

AD9000 EVAULUATION/TEST BOARD

Evaluating and/or testing the AD9000 A/D converter is made easier with the use of a printed circuit board which contains an AD and the necessary lest and reconstruction circuits

A block diagram of this circuit is shown in Figure 6.
The AD9000 being evaluated or tested is connected in a back-toback arrangement with a high-speed, high-resolution D/A convercer. This combination allows the user to select a reconstructed version of the digitized analog input; or to examine the error signal when checking linearity. All necessary circuit components are contained on the $8.5^{\prime \prime} \times 6.3^{\prime \prime}$ printed circuit board; the user needs to provide only power supply voltages.
Two models of boards are available, but the only difference between them is the model number of the A / D which is instailed at the time of shipment. The AD9000JD/PCB includes a model AD9000JD unit; the AD90005D/PCB has a model AD9000SD.
In both boards, the A / D converter is installed in a socker; and all other circuits are soldered into place. This technique allows
the evaluation board to be used as a test circuit for incoming AD9000 devices when production quantities are required. Complete operating instructions and a schematic are included with each board.

The testevaluation board allows the user to check the performance of converters by providing a method for adjusting $+\mathrm{V}_{\mathrm{REF}}$, $-\mathrm{V}_{\mathrm{REF}}, \mathrm{V}_{\mathrm{H}}$, encode command pulse width, encode rate, and latch strobe deiay. This kind of flexibility in assessing the unit's performance can supply valuable insight on how to obtain optimum performance from the AD9000 and get maximum bencfit from its characteristics.

ORDERING INFORMATION

All versions of the AD9000 A/D converter are housed in 16-pin ceramic monolithic packages. Units operating over the standard temperature range of 0 to $+70^{\circ} \mathrm{C}$ are designated AD9000JD; for operation over an extended temperature range of $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$, order model number AD9000SD. Devices which have been processed per MIL.STD-883, Method 5004, are available as AD 9000 SD 883 B .

Figure 6. AD9000/PCB Block Diagram

FEATURES
$5 n 5$ Sotting Time
100 MHz Update Rate
20mA Output Current
ECL-Compatible
40 MHz Multiplying Mode

APPLICATIONS

Raster Scan \& Vector Graphic Displays
High-Speed Waveform Generation
Digital VCOs
Ultra-Fast Digital Attenuators

GENERAL DESCRIPTION

The Analog Devices AD9768SD D/A converter is a monolithic current-output converter which can accept 8 bits of ECL-level digitai input voltages and convert them into analog signals as update rates as high as 100 MHz . In addition to its use as a standard D/A converter, it can also be utilized as a two-quadrant multiplying D / A at multiplying bandwidths as high as 40 MHz .
Art inherently low glitch design is used, and the complementary current outputs are suitable for driving transmission lines directly. Nominal full-scale output is 20 mA , which corresponds to a 1 volt drop across a 50Ω load, or' ± 1 volt across 100 ? returned to +1 volt. The actual output current is decermined by the on-chip reference voltage ($\mathrm{V}_{\text {RLI }} \approx-1.26 \mathrm{~V}$) and an external current setting resistor, $\mathrm{R}_{\text {SE:T }}$.
Full-scale output current $\mathrm{l}_{\text {oly }}$ with digital " 1 " at all inputs is calculated with the equation:

$$
\mathrm{I}_{\mathrm{OLT}}=4 \times \frac{\mathrm{V}_{\mathrm{RET}} \rightarrow \mathrm{~V}_{\mathrm{REF}}}{\mathrm{R}_{\mathrm{SET}}}
$$

The setting resistor $\mathrm{R}_{\text {SE; }}$ and the output load resistor should both have low temperature coefficients. A complementary $\overline{I_{O L T}}$ is also provided.
The reference voltage source is a modifed bandgap type and is nominally -1.26 volts. This reference supply requires no external regulation. To reduce the possibility of noise generation and/or inscability, pin 15 (REFERENCE OUT) can be decoupled using a high-quality ceramic chip capacitor. Stabilization of the internai loop amplifier is by a single capacitor connected from pin 17 (COMPENSATION) to ground. The minimum value for this capacitor is 3900 pF , although a $0.01 \mu \mathrm{~F}$ ceramic chip capacitor is recommended.

The incredible speed characteristics of the AD9768SD D/A converter make it attractive for a wide range of high-speed applications. The ability of the unit to operate as a two-quadrant multiplying D / A converter adds another dimension to its usefulness and makes the AD9768SD a truly versatile device.

AD9768 8lock Diagram (Conventional Operation)

[^0]P.O. Box 280; Tel:617/329-4700

Norwood, Massachusetts 02062 U.S.A.
Telex: 924491

Cables: ANALOG NORWOODMASS

nominal digital input levels；nominai power supplies；$\left.R_{L}=50 \Omega ; R_{S E T}=220 \Omega ; Y_{R G T}=0 V\right)$

		Units	AD9768SD
	EESOLLTION：FS＝FLCLSCAIE）	Birs	8
	LSB WEIGHTIGLRREMT	$\mu \mathrm{A}$	78
	ACCLRACY＇		
	Differendial Nonlizeariy	$\pm \%$ FS	0.2
	Integral Nonlmeaney	$=\%$ FS	0.2
	thonstonucity		Guarantexd
	Zero Offer（ Iniua）	μA	60
－	TEMPERATURECOEFFICIENTS		
	Zero Otter	PPm＊${ }^{\text {C }}$	1.5
	Reference Voltage（ -1.76 V ）	pprnc ${ }^{\text {c }}$	70
	DIGITAL DATA INPUTS		
	Logic Compaublity		ECL
	Logre Volage Levels＂ 1 ＂	ϑ	－0．9
	＂0＂＝	勺	－ 1.7
	Coung	Bunary	Har Out
		Offset 8	－Bipolar Ous
	QUTPLF		
	Current Liupular．FS	ma mix，	Y 0， 30.40
	4097×15		
	All Digital＂1＂Input	mL	30
	All Digital＂0＂Input	$\pi \mathrm{m}$	0
	$\mathrm{I}_{\mathrm{OT}} \cdots \mathrm{Prat}_{\text {It }}$		
	All Digitad＂${ }^{\text {cinput }}$	m－	0
－	Ati Dugial＂0＂Input	$m i$	20
	Cumpliace	4	$-0.710-30$
	Impedance	11：$=5 \%$ ）	830
	SPEEDPERFORMANCE		
	Serting Tune（to 0．2\％FS $)^{2}$	ns	5
	Slew Rate	$\mathrm{V} / \mathrm{LH}_{5}$	400
	Ledate Rate	MHz	100
	Ruse Tink	as	1.8
	Glitch Encrgy	P^{4}－ sec	200
	REFERENCE		
	Interna，Monolithic ${ }^{3}$	v	-1.26
	Exutmal，Variobe4 ${ }^{\text {a }}$		
	Volage－Mutipiying Mode	V （max）	010－1．1（－2）
	Cutrent－Muluplying Mode	mA（max）	B60－5 (-7.5)
	VOLTAGE－MULTIPLYING MODE ${ }^{+}$（See Figure 1）		
	V_{4} Range（at Pin 16 ）	v	$=0.5$
	V_{4} Center	v	－0．6
－	Resustance（at l＇in 16）	kd？	800
	Transter Funcuon－	Measured ar Pin I3：Digital＂O＂Appliced to Bits 1－8：	
		Measured at I＇in 13；Digital＂I＂Appied to Bits 1－8：	
－－	Larece Stgrial Bandwrdth－3dB Pome：	kHz	250
	CLRRENT－MLLTIPLYINGMODE：Ser Figure＋		
		mit	0105
	Resbiameed d Par 18：	\square	160
	Transler Fuxiwe－	Mcasuredal［xin I3；Digital＂O＂Apptied to Bies 1－8：	
			$=0$ ma $\mathrm{T}_{\text {MT }}$
			$=0 \mathrm{~mA} \mathrm{CuF}_{1}$
		Measure	（igua＂1＂Applied
		10 Bits 1	－
			$=4 \mathrm{~mA} \mathrm{Cum}_{1}$
			$=20 \mathrm{~mA} \mathrm{tm}_{\mathrm{m}}$
	Large Sigral Bundwicth（－ 3 dB Poitri）	MHz	40
	POWER REQUIREMENTS		
	$-5.2 \mathrm{~V}=0.25$	mA（max）	66 （70）
	－5．0V $=0.25$	mA（max）	14（15）
	Power Dissipaikan	mW（max）	410（430）
	Power Supply Sensitiviry	4＊\％	0.07
	TEMPERATURERANGES		
	Operaing	${ }^{\circ}$	-30 to +115
	Scorage	${ }^{\circ}$	$-59.00+150$
	THERMAL RESISTANCE ${ }^{\text {² }}$		
	Juncrion to Air，fir（free Air）	${ }^{\circ} \mathrm{CW}$	90
	Junction to Case，隹	CW	20

OUTLINE DIMENSIONS
Dinensions shown in inches and（omen）．

AD9768SD PIN CONNECTIONS
（TOP VIEW）

THEORY OF OPERATION

- lower left portion of the schernatic with its collector connected to pin $18 \mathrm{R}_{\text {strit }}$. Its function is to help establish the base voltage on the eight current sources; it works in conjunction with the external $R_{\text {sfry }}$ resistor selected by the user of the AD9768, and the reference amplifier. Current flowing through this transistor is referred to as I_{M} in the figures and test.
When the AD9768 is operating as a conventional current-output DIA converter, I_{M} develops a voltage across $\mathrm{R}_{\text {SEr }}$ which is one of the inputs to the on-board reference amplifter shown in the schematic. The other input to this amplifier is the on-chip reference voltage of -1.26 volts.

The output of the reference amplifier adjusts the current-source base reference voltage at pin 17; this, in turn, adjusts the value of I_{M} in the singie-transistor current source and causes it to develop a voltage across $R_{5 k T}$ which maintains pin 18 at the

- 1.26 volts of the on-chip reference supply

To maintain good stability in the internal loop reierence amplifier, a ceramic chip capacitor with a nominal value of $0.01 \mu \mathrm{~F}$ should be connected to pin 17 COMPENSATION; minimum recommended value for this capacitor is 3900 pF .
The temperature coefficient of the load resistor (R_{L}) can affect the performance of the AD9768 D/A converter, as it can with any current-output converter. The design and use of the AD9768 and ifs dependence on an external $R_{\text {SET }}$ resistor, however, make it sensitive also to the tempco of $\mathrm{R}_{\text {SET }}$. The user is cautioned to select R_{L} and $\mathrm{R}_{\text {SET }}$ resistors which have low temperature coefficients.

DIGITAL GROUND (pin 11) and ANALOG RETURN (pin 12) are normally connected together; this connection should be made as close as possible to the device case to minimize possible noise problems. The AD9768 D/A is similiar to any other highspeed, high performance device: optinum use requires careful attention to all design details, including the layout of the circuit in which the converter is used.

CONVEN'TIONAL AD9768

Refer to Figure 1, Conventional AD9768SD.

Figure 1. Conventional AD9768SD
The output current of the AD9768 appears at pin 13 (l_{0}) and develops a voltage across the load resistor R_{L}. which is based on:
A. I_{M} (the current flowing through the single-transistor source discussed above)
B. Value of $\mathrm{R}_{\mathbf{i}}$.
I_{M} is a function of the return voltage ($V_{R E T}$), the reference voltage ($\mathrm{V}_{\mathrm{REF}}$), and the value of $\mathrm{R}_{\text {SET }}$; all of these are selected by the user for his application. The necessary equations for calculating precise values for each are part of Figure 1 . As indicated,
the voltage drop across R_{L} is added to the return voltage; the resulting voltage is the total $V_{\text {OUY }}$ of the converter.

VOLTAGE MULTIPLYING MODE

n addition to its use as an ultra-high specd current outpur D/A Converter, the AD9768 can also be used as a two-quadrant multiplying D/A in tither a voirage mode or a current mode.
Refer to Figure 2, Multiplying AD9768 (Voltage Mode).

Figure 2. Multiplying AD9768 (Voltage Mode)
When operating in this mode, the analog output of the AD9768 is influenced by the digital inputs and an external multiplying voltage (V_{w}) applied to pin 16 REFERENCE IN, which takes the place of the internal reference used when the DA is operating in a conventional manner.
The value of I_{M} flowing chrough $\mathrm{R}_{\mathrm{SET}}$ is set by the voltage of $\mathrm{V}_{\mathrm{RET}}$ minus the multiplying voltage (V_{M}), divided by $\mathrm{R}_{\mathrm{SE}-5}$; the amount of this current is part of the equation which establishes the analog ourpur ($\mathrm{V}_{\text {OUT }}$) of the $\mathrm{AD9768}$ and is chosen by the user for his application. As it is when operating the D/A in a conventional fashion, $\mathrm{V}_{\mathrm{RET}}$ can be any value between 0 volts
\because nd +3 votts. V_{M} (for purposes of discussion here) is some regative voitage and can be varied over a range which is approximately 1 volt peak-to-peak.
If the load resistor $\left(R_{L}\right)$ has a value of 50 ohms, if $R_{\text {sEt }}$ has a value of 220 ohms, and if $\mathrm{V}_{\text {RET }}$ is 0 V , the center of the V_{M} voltage will be -0.6 V ; and it can vary from -0.1 V to $-1 . \mathrm{JV}$. Typically, the frequency of these variations has an upper limit of 250 kHz when operating in the voltage multiplying mode; that frequency is the 3 dB point of the bandwidth of the internal reference amplifier.

Figure 3. Iout vs. Mu/tiplying Voltage
The combined effects of variations in V_{M} and changes in digital input values are shown in Figure 3, Iout vs. Mutuiplying Voltage. In this illustration, the ordinate of the graph is expressect in erms of milliamps of Iout current at pin 13. Vout, of course, vill be a function of the value of R_{L} chosen by the user.

The negative value of V_{M} on the horizontal axis is shown starting at approximately -0.1 V , rather than 0 V , because the AD9768 must have some smail value of volcage applied to perform a multiplying function. For the conditions shown in the figure, output current starts to become nonlinear at approximately

20 mA because of the maximum 30 mA outpur drive capabilities of the device. Different values for $\mathrm{R}_{\text {ser }}$ and R_{l}, would atter the point where limiting first appears.

CURRENT MULTIPLYING MODE

The AD9768 D/A converter can be operated at markedly higher multiplying rates when operated in a current-mulciplying mode, as contrasted with the voltage-multiplying mode. Reter to Figure 4, Multiplying AD9768SD (Current Mode).

Figure 4. Multiplying AD9768SD (Current Mode)
In this mode, the internal reference amplifier and its intherent frequency limitations are replaced by a current source comprised of U'l and associated circuits. These circuits supply a unipolar current I_{M} which is one-fourth the full-scale outpui current (with digital "l" applied to all inputs) and set current flow through the load resistor.
$V_{\text {in }}$ is some voltage chosen by the user for his particular application; the value of this voltage is based in part on the size of the load resistor and the 0 mA to 5 mA range of $\mathrm{I}_{\mathrm{m}} . V_{\mathrm{IN}}$ can have frequency components as high as $40 \mathrm{MHz} . \mathrm{V}_{\mathrm{AD}}$ and $\mathrm{R}_{\mathrm{a} D 1}$ provide an offset adjustment to comperasate for the de component of $V_{\text {IN }}$ to assure I_{3} is always a unjpolar current between 0 mA and 5 mA . The values of the required voltages and resistors can be caleulated using the equations which are part of Figure 4 .

Figure 5. Sout vs. Multiplying Current

As shown, I_{M} can vary over the range of 0 mA to 5 mA ; a value of approximately 0.3 mA may be the practical lower limit because of noniinearities at extremely small current levels. These changes in I_{m} are combined with variations in digital inputs, producing complex changes in the ourput current (at pin 13) and in Vout. The "rounding' of the current curve in the graph is the result of lout approaching the 30 mA maximum drive capabilities of the AD9768 and needs to be taken into accoum to assure optimum performance in the selected application.

Appendix H
End Notes and References

ENDNOTES

```
'Stewart, William K. 1985. "Advanced Observation Inspection ROV for 6,000
Meter Operations."
2 Drake, Allen D., and Stewart, William K. "Design of a Remote Fiber-Optic
    Video Link for a Remote Underwater Color Camera."
\({ }^{3}\) Cherin, Allen H. 1983. An Introduction to Optical Fibers.
4 Ibid.
5 Ibid.
6 Drake, Allen D., and Stewart, William K. "Design of a Remote Fiber- Optic
Video Link for a Remote Underwater Color Camera."
7 AT\&T Technologies. 1986. "OOL 200 Lightwave Data Link Sheet."
8
    Seippe1, Robert G. 1983. Fiber Optics.
9
    Ibid.
10
    Ibid.
It
NSG America. SELFOC Handbook.
12
    Ibid.
13
    Ibid.
14
Ibid.
\({ }^{15}\) Ibid.
\({ }^{16}\) Carlson, A. Bruce. 1975. Communication Systems.
17
    lbid.
18
Ibid.
19
Fairchild Corp. 1982. F 100K ECL User's Handbook.
20
Signetics Corp. 1974. Signetics Corp.
\({ }^{21}\) Young, Thomas. 1981. Linear Integrated Circuits.
```

22
Fairchild Corp. 1982. F 100K ECL User's Handbook. 23
ibid.
24
Cherin, Allen H. 1983. An Introduction to Optical Fibers.
25
NSG America, Inc. SELFOC Handbook.
26
Fairchild Corp. 1982. F 100 K ECL User's Handbook.
27 AT\&T Technologies. 1986. "ODL 200 Lightwave Data Link Sheet."
28 Fairchild Corp. 1982. F 100K ECL User's Handbook; Motorola Inc. 1985. MECL Device Data.

REFERENCES

1. Stewart, William K., 1985. "Advanced Observation Inspection ROV for 6,000 Meter Operations", Woods Hole, Ma.
2. McNamara, John E. 1977. Technical_Aspects of Data Communication. Digital Press, Maynard, Ma.
3. Keiser, Gerd, 1983. Optical Fiber Commnications. McGraw-Hill, New York, NY.
4. Fairchild Corp., 1982. F100K ECL Users_Handbook. Fairchild Camera and Instrument Corporation, Advanced Bipolar Division, Mountain View, Ca.
5. Sheingold, Daniel H., ed. 1986. Analog-Digital Conversion Handbook. Prentice-Hall, Englewood Cliffs, NJ.
6. AT\&T Technologies, 1986. "ODL 200 Lightwave Data Link Data Sheet". AT\&T Technologies, Alientown, Pa.
7. Drake, Allen D., and Stewart, William K., 1985. "Design of a Fiber-Optic Video Link for a Remote Underwater Color Camera". University of New Hampshire, Durham, NH.
8. Chevin, Allen H., 1983. An Introduction to Optical_Eibers. McGraw-Hill, New York, NY.
9. Seippel, Robert G., 1983. Fiber Optics, Prentice-Hall, Reston, Va.
10. NSG America, Inc. SELFOC Handbook, 136 Central Avenue, Clark, MJ .
11. Grob, Bernard, 1954. Basic Television. McGraw-Hill, New York, NY.
12. Carlson, A. Bruce, 1975. Communication Systems, second ed. HcGraw-Hill, New York, NY.
13. Young, Thomas, 1981. Linear Integrated Circuits. John Wiles \& Sons, New York, NY.
14. Signetics Corp., 1974. Signetics Corp.
15. Motorola Inc. I 985. MECL Device Data.
16. Analog Devices, 1984. Data-Acguisition Databook, 1984, volume 1 : Integrated Circuits.
17. Fairchild Corp., 1982. Flook_ECL Databook.

[^0]: Intormation furnished by Analog Devices is believed to be accurate and reliabie. However, no responsibility is assumad by Analog Devices for its use; nar for any infringements of patents or other rights of third parties which may result from its use. Na license is granted by implica. tion or otherwise under any patent or patent rights of Analog Devicts.

